
Hierarchy and interpretability in neural
models of language processing

ILLC Dissertation Series DS-2020-06

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

The investigations were supported by the Netherlands Organization for Scientific
Research (NWO), through a Gravitation Grant 024.001.006 to the Language in
Interaction Consortium.

Copyright © 2019 by Dieuwke Hupkes

Publisher: Boekengilde

Printed and bound by printenbind.nl

ISBN: 90–6402–222-1

Hierarchy and interpretability in neural
models of language processing

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 17 juni 2020, te 13 uur

door

Dieuwke Hupkes

geboren te Wageningen

Promotiecommisie

Promotores: Dr. W.H. Zuidema Universiteit van Amsterdam
Prof. Dr. L.W.M. Bod Universiteit van Amsterdam

Overige leden: Dr. A. Bisazza Rijksuniversiteit Groningen
Dr. R. Fernández Rovira Universiteit van Amsterdam
Prof. Dr. M. van Lambalgen Universiteit van Amsterdam
Prof. Dr. P. Monaghan Lancaster University
Prof. Dr. K. Sima’an Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

to

my parents Aukje and Michiel

v

Contents

Acknowledgments xiii

1 Introduction 1
1.1 My original plan . 1
1.2 Neural networks as explanatory models 2

1.2.1 Architectural similarity . 3
1.2.2 Behavioural similarity . 4
1.2.3 Model interpretability . 5

1.3 Summary and outline . 5

2 Recurrent neural networks and grammatical structure 7
2.1 Recurrent neural networks . 7

2.1.1 Simple recurrent networks 8
2.1.2 Long short-term memory networks 8
2.1.3 Gated recurrent units . 10
2.1.4 LSTM vs GRU . 11

2.2 Recurrent architectures . 11
2.2.1 Types of architectures . 11
2.2.2 Word embeddings . 12
2.2.3 Output layers . 12
2.2.4 Attention . 12

2.3 Approach 1: artificial data . 13
2.3.1 Formal grammars . 13
2.3.2 Compositional signal-meaning mappings 13

2.4 Approach 2: naturalistic data . 16
2.4.1 Language models as psycholinguistic subjects 16
2.4.2 The number agreement task 17
2.4.3 Supervised number prediction 17
2.4.4 SV agreement in language models 18

vii

2.4.5 SV agreement in language models, revisited 18
2.5 Summary . 19

Part One: Artificial languages

3 Diagnostic classification and the arithmetic language 23
3.1 Arithmetic language . 24

3.1.1 Symbolic strategies . 24
3.1.2 Predictions following from strategies 26

3.2 Can RNNs learn the arithmetic language? 26
3.2.1 Training . 27
3.2.2 Evaluation . 28

3.3 Interpreting hidden activations . 29
3.3.1 Individual cell dynamics 29
3.3.2 Gate activation statistics 29

3.4 Diagnostic classification . 31
3.5 Cumulative or recursive? . 32

3.5.1 Diagnostic accuracies . 33
3.5.2 Plotting trajectories . 34

3.6 Refining the cumulative hypothesis 35
3.6.1 Two hypotheses . 35
3.6.2 Computing scopes . 36
3.6.3 What is encoded where? 37
3.6.4 Diagnosing gates . 38

3.7 Conclusion . 39

4 PCFG SET 41
4.1 Compositionality . 42

4.1.1 Systematicity . 44
4.1.2 Productivity . 45
4.1.3 Substitutivity . 45
4.1.4 Localism . 46
4.1.5 Overgeneralisation . 47

4.2 Data . 48
4.2.1 Input sequences: syntax 49
4.2.2 Output sequences: semantics 49
4.2.3 Data construction . 50

4.3 Architectures . 52
4.3.1 LSTMS2S . 53
4.3.2 ConvS2S . 53
4.3.3 Transformer . 54

4.4 Experiments and results . 55

viii

4.4.1 Task accuracy . 56
4.4.2 Systematicity . 58
4.4.3 Productivity . 60
4.4.4 Substitutivity . 63
4.4.5 Localism . 67
4.4.6 Overgeneralisation . 70

4.5 Conclusion . 74

Part Two: Natural language

5 Diagnostic classification and interventions 79
5.1 Model . 80
5.2 Data . 80

5.2.1 Gulordava data . 80
5.2.2 Wikipedia dependency corpus 81

5.3 Predicting number from activations 81
5.3.1 Diagnostic classifier training 82
5.3.2 Results . 83

5.4 Representations across time steps 85
5.4.1 Diagnostic classifier training 85
5.4.2 Results . 85

5.5 Representations across components 87
5.6 Interventions . 88

5.6.1 Intervention procedure . 89
5.6.2 New diagnostic classifier accuracies 89
5.6.3 NA-task accuracies . 90

5.7 Conclusion . 91

6 Neuron ablation 93
6.1 Data . 94

6.1.1 Linzen data set . 94
6.1.2 Synthetic data sets . 94

6.2 Task performance . 95
6.3 Long-distance number units . 97

6.3.1 Ablation experiment . 97
6.3.2 Singular and plural unit dynamics 99
6.3.3 Correctly vs incorrectly processed sentences 101

6.4 Short-distance number units . 103
6.4.1 Short and long-distance number information 104
6.4.2 Ablating short-distance units 104

6.5 Syntax units . 105
6.5.1 Tree-depth prediction . 105

ix

6.5.2 Behaviour of syntax units 106
6.6 Conclusion . 106

7 Generalised contextual decomposition 109
7.1 Contextual Decomposition . 110

7.1.1 Separating relevant and irrelevant parts 110
7.1.2 Output logits zt . 111
7.1.3 Hidden state ht . 112
7.1.4 Memory cell ct . 114
7.1.5 Gates ft, ot and it, and candidate activation c̃ 114
7.1.6 Shapley approximation . 115

7.2 Generalised contextual decomposition 116
7.2.1 Choosing interaction sets 117
7.2.2 Technical fixes . 118

7.3 Model and data . 120
7.4 Token contributions . 120

7.4.1 Decomposition matrix . 121
7.4.2 Average decomposition matrices 123

7.5 Information ablation . 124
7.5.1 Subject information . 124
7.5.2 The role of the intercepts 125
7.5.3 The decoder bias . 126

7.6 Conclusion . 126

Part Three: Guiding models

8 Attentive Guidance 131
8.1 Data . 132

8.1.1 Task description . 132
8.1.2 Data splits . 133

8.2 Model . 134
8.2.1 Architecture . 134
8.2.2 Attention mechanism . 135
8.2.3 Learning . 136

8.3 Attentive guidance . 136
8.3.1 Attentive guidance as a loss 136

8.4 Experiments . 138
8.4.1 Model parameters . 138
8.4.2 Evaluation of best configurations 140

8.5 Compositionality in parameters 141
8.5.1 Weight heat maps . 141
8.5.2 Connection maps . 142

x

8.6 Compositionality in activations 144
8.6.1 Specialised neurons . 144
8.6.2 Gating behaviour . 147

8.7 Ablation and substitution studies 148
8.7.1 Component substitution 148
8.7.2 Neuron pruning . 150

8.8 Conclusion . 151

9 Discussion and conclusions 153
9.1 RNNs as abstractions of human processing 154
9.2 Can RNNs represent interesting structure? 154

9.2.1 Artificial languages . 155
9.2.2 Natural language . 156

9.3 How can we interpret neural networks? 157
9.3.1 Diagnostic classification 157
9.3.2 Ablation . 158
9.3.3 Generalised Contextual Decomposition 159

9.4 The societal impact of interpretability 160
9.4.1 Pronoun resolution . 160
9.4.2 Corpus . 160
9.4.3 Default reasoning for gender 161
9.4.4 Biases in society . 161

9.5 What’s next? . 161
9.5.1 Improving interpretability techniques 162
9.5.2 Actually using RNNs as explanatory models of language

processing . 163

Samenvatting 181

Abstract 183

xi

Acknowledgments

I have frequently heard that the acknowledgement section is the most read section
of a dissertation. It is also the only section in which I can write a bit erratically and
exercise my (from Dutch stemming?) preference to make endlessly long sentences
with multiple sidenotes in parentheses. So that is what I will do.

I want to start by thanking Jelle and Khalil, who both gave me a chance at a
moment that many others might not have. To explain this to you, I have to go
a bit back in time. Every since I was a little kid, I have always been extremely
interested in language, but my main topic of study when I started at the university
was physics. As a sidenote, while knowledge of electrodynamics, thermal physics
and quantum mechanics are not frequently directly important to my current
research, I do feel that the bachelor of physics programme at the UvA gave me an
incredibly useful foundation to study any other topic after. They will most likely
never read this, but I would like to express my gratitude to the people that are
responsible for this programme as well as the teachers that taught me. Some of
them (Auke Pieter, Erik, Stan) I still see regularly walking around at the Nikhef
building and they remind me of a good time.

To go back to the main story: the physics programme provided me with
an excellent foundation, but it of course left me with many gaps in knowledge
when I started to study natural language processing. In particular, apart from
implementing numerical solutions to differential equations in matematica, I did not
know how to program. When I took my first natural language processing course,
taught by Khalil (who, I want to mention, was an incredibly inspiring teacher!)
this became a substantial hurdle, which I solved by partnering up with someone
– Zé Pedro – who did know how to program. Zé programmed our parser, while
I wrote the report. We got a high mark for it, but I felt bad about pretending
to be able to program, so I went to Khalil and told him that I did not do any
programming and wrote only the report. After asking me if I understood the
underlying concepts (I did), he told me that if I promised him to program a parser
at some later point in my life that he had no problem with me not being able to

xiii

program now. With this kind gesture, he allowed me to pass my first NLP course.

Of course, my programming problems did not suddenly end after one block,
and when I arrived at my next NLP course, taught by Jelle, I was still struggling.
I got stuck on the second assignment of Jelle’s course (at that time, Jelle started
his course with one lecture of command line tools using regular expressions I had
no problem finishing that assignment, and I became a huge fan of hacking through
text files using the things he taught me; now, I usually search online when I cannot
figure out what to do myself, but for several years after his course I frequently
referred back to the examples in his assignment!). Not being able to finish this
second assignment, I decided to drop Jelle’s course, upon which Jelle called me
into his office and told me he would be sad to see me go, because it seemed from
the seminar sessions I really enjoyed the course. I told him I did, but that I did
not manage to finish the second assignment. He forgave me the assignment and,
later, I passed my second NLP course.

Jelle and Khalil, while I still frequently think back of these two moments –
that perhaps you do not even remember anymore – I am not sure if I ever really
thanked you for giving me these opportunities, so I want to do so now: we will
never know if I would have given up, but I might have, and I owe you many thanks
for how you approached me.

Of course, keeping me on board at that course is far from the only thing that I
would like to thank Jelle for. I learned many many things from him (not only the
invaluable bash-hacking with regular expressions!) and I have always been amazed
by his vision and his ability to provide useful feedback even on projects that he
hardly knew anything about. Jelle, I am extremely grateful for the academical
guidance that you have given me over the years, for that you stood up for me
when I needed that, and for that you always gave me the freedom to develop
myself and my own ideas, even in cases where that was not necessarily in your
own best interest.

Academically speaking, there are a few more people that I would like to thank.
First of all, I would like to thank Rens, who read my entire dissertation with
a speed almost unimaginable. I really appreciate his usually extremely quick
responses. Directly related to my dissertation, I would like to thank also my
committee members, who took the time to read and assess my work.

A bit more broadly I would like to thank all the people that I collaborated
with in the past couple of years. I was lucky to collaborate with many different
people, researchers from other universities but also students at the University of
Amsterdam. I will not mention them all by name, but I do want to thank them
all for what they taught me and the students in particular for trusting me to
supervise them. I learned a lot from all of you!

Also the rest of my colleagues and the ILLC in general I want to thank as a
group, making an exception for my office mates Malvin and Jouke. It was great to
share an office with you; thanks for helping me out with stupid problems (and not

xiv

laughing at me) and, importantly, thanks for following me with the sitting balls!
The ILLC provided me a great environment to learn and work and I enjoyed the
chats with everyone (including the support staff!) in the hallways. I genuinely
hope I will get to return as a permanent staff member some day.

A colleague (who also became my partner) that I do want to mention specifically
is Elia, to whom I owe a great deal of thanks. We did many projects together
and I learned a lot from him. He not only was responsible for a huge boost in my
productivity and even my career in general, through his connections and managing
capabilities, but he also helped me refind my love for doing research. When I
met Elia, I was unconvinced I wanted to continue my academic career after my
PhD. I am not sure what exactly it was – his enthusiasm and drive, or the many
interesting projects we did together – but after working with him for less than
half a year I could not imagine anymore doing anything else than researching
natural language processing. Thank you Elia, I hope that I may do many many
more projects with you!

On the edge of personal and academic I want to thank also my younger brother
Elte. He answered my endless and probably very naive questions about linux,
terminals, dependency errors, git and all things technical. He saved me many
times when I messed up my operating system or my github repository and thanks
to him I know now that git 6= github, that the ruby installation of the ubuntu
repository is a mess, and I can install my own operating system. I am now also
able to find the answers to most of my technical problems using Google, although
incidentally I still ask him for help. Thank you my sweet brother.

Lastly, on a purely personal level, I would like to thank my friends for supporting
me and distracting me when I was stressed. For all of them, I could write down
something special they did during this period, but I will only mention two people
in particular: Judith, who is one of my oldest friend and was always available to
listen to my stories and Suzy, my pole dance partner. To Suzy I would like to say:
thank you for everything. We started as just pole partners, but training with you
was always such a delight – no matter how stressed out I was – that you became
my best friend and spending time with you became invaluable for my mind.

Lastly, the very most important thanks go to my parents, to whom I dedicated
this dissertation. Aukje en Michiel, over de beslissing om dit werk aan jullie op
te dragen hoefde ik niet eens een fractie van een seconde na te denken. De lijst
van dingen waar ik jullie voor zou willen bedanken is eindeloos; jullie vertrouwen,
liefde en voorbeeld zijn van onschatbare waarde. Ik heb een diepe bewondering
voor jullie beide en ik kan me geen betere ouders wensen of voorstellen �.

xv

Chapter 1

Introduction

When I started this thesis project in 2015, the landscape of the field of com-
putational linguistics looked substantially different from what it looks like now.
Transformers did not yet exist, machine translation models were still commonly
using n-grams as their target side language model, and the paper proposing the
now widely used optimiser Adam (Kingma and Ba, 2015) had not yet been offi-
cially published. Recurrent neural networks – that until then had been of interest
mostly to cognitive scientists – had just cautiously started to outperform symbolic
models, in some domains.

1.1 My original plan

The ambitious plan of my four-year project was to build upon these preliminary
successes to build a neurally plausible semantic parser that would combine symbolic
knowledge of the structure of language and the cognitively interesting neural
network models. My main motivation to embark on this project was my interest
in the structure of language and my curiosity about how this structure could
be represented in human brains. Connectionist architectures – inspired by the
human brain and starting to be more successful on interesting natural language
tasks – formed a perfect starting point for this enterprise. I was enthusiastic
about incorporating existing (symbolic) knowledge about natural language within
artificial neural networks to combine the best of both worlds.

My project plan described two steps. First, I would focus on understanding
how and why different parts of the current – mostly symbolic, some neural – models
of hierarchical sentence processing worked. Then, I would use these insights to
develop models in which we gradually eliminate assumptions such as discretisation
of time, discrete, symbolic categories and pre-given tree structures. The project
plan furthermore mentioned that I would test this neurally plausible parser on
large corpora such as the Penn Treebank (PTB) and the Stanford Sentiment
Treebank. For the current reader, with knowledge of the current models, in 2019,

1

2 Chapter 1. Introduction

it might not come as a large surprise that I quickly deviated from this two-step
plan.

Quickly after I started my project, I discovered that I could not tweak, adapt
or understand neural models like I was used to with symbolic models. Therefore,
integrating existing knowledge into such models was a difficult undertaking. How
difficult exactly is exemplified by the main sources of the recent successes of neural
models. While many researchers have tried to improve neural networks with
domain knowledge, it has thus not (yet) lead to groundbreaking improvements of
neural network models. The most prominent successes in what is now commonly
called deep learning should instead be attributed to computational advances that
allowed us to train models on larger data sets (the PTB does not qualify as a large
corpus anymore), technical advances that optimised the training algorithms (e.g.
Kingma and Ba, 2015) and engineering advances that resulted in new architectures
(e.g. Bahdanau et al., 2015; Vaswani et al., 2017).

I sometimes find it disappointing that the main improvements did not stem
from incorporating external knowledge about the phenomenon that is modelled
and that the actual advances are also not particularly interesting for researchers
interested in cognition or language. However, the resulting new generation of
models that perform remarkably well on many natural language processing tasks
did revive the relevance of considering connectionist models as alternative models
of language processing. Contrary to the early days of connectionism, in which
neural networks were typically trained to model small data sets of fewer than 100
sentences, we now have the opportunity to study neural network models that can
capture many interesting phenomena. This observation forms the basis of the
work presented in this dissertation, in which I will (re)consider how useful neural
network models are to further our understanding of human language processing.
Or, in other words, I examine whether such models can serve as explanatory
models of language processing, where I focus in particular on the processing of
the hierarchical compositional structure of natural language.

1.2 Neural networks as explanatory models

For a neural network to be useful as an explanatory model of human language
processing, there are three important prerequisites:

i) The model should share some relevant aspects of processing with humans
(architectural similarity);

ii) The model should be able to represent or approximate the behaviour of
humans with respect to some phenomena that we would like to understand
(behavioural similarity);

iii) We should be able to obtain insight into how it implements or processes
these phenomena (model interpretability).

1.2. Neural networks as explanatory models 3

1.2.1 Architectural similarity

The first prerequisite for explanatory models is that they should have some
properties relevant to the modeller. To give a simple example, if someone wants
to build an explanatory model to understand how particular types of sequences
can be modelled incrementally, it is important that the model used to do so also
receives sequences incrementally. Similarly, for a model to be useful to understand
how language is processed by humans, it should share some relevant properties
with the human processing system. It is my conviction that neural networks do.

Why neural networks? When I started to look into the capabilities and
internal dynamics of neural network models, I often had to defend why I was
interested in them. Many linguists I spoke to were skeptical of leaving the insightful
symbolic models for the ‘black-box’ neural network models. Neuroscience-oriented
people, on the other hand, often considered artificial neural networks too far away
from the real brain to be able to tell us something useful about humans.

Like the linguists that asked critical questions about this line of research, also
I preferred symbolic models of language, because such models are easy to use as
explanatory models that help explain the data they describe. There is, however,
also an important concern that symbolic models cannot address: how can the
symbolic view be reunited with the architecture of the human brain? The brain
does not have any obvious means to represent rules or symbols, and a symbolic
model – even if it perfectly describes language – can thus not tell us why language
is structured like that, or how such a system can be implemented by a human
brain. Artificial neural network models, provided they can adequately model these
symbolic aspects of language that we care about, might.

While also neural networks are, indeed, in many aspects incomparable with
real brains, they do share some – in my opinion very relevant – dimensions with
the human processing system: they have no explicit means to represent rules
and symbols and – in case of recurrent networks – have to process incoming data
sequentially, incrementally and in linear time. As such, if we can understand them,
they might in fact serve as explanatory models – of how the seemingly symbolic
structure of language can be implemented in a system of interconnected units that
sequentially process structured sequences.

Why recurrent neural networks? Researching the capabilities and internal
dynamics of neural network models has now become part of an established and
even relatively mainstream field and I rarely have to defend studying neural
networks anymore. I do sometimes have to defend, however, why my primary
focus is on recurrent models instead of the newer, currently very popular all-
attention-based architectures that outperform recurrent networks in most applied
domains. Concerning this dissertation, a first obvious argument is that these
models did not exist for the larger part of my PhD project. For my second and

4 Chapter 1. Introduction

more important argument to study recurrent models, which I already touched
before, I would like to cite the first sentence of the article in which Jeffrey Elman
introduced the simple recurrent network:

Time is clearly important in cognition. It is inextricably bound up
with many behaviors (such as language) which express themselves as
temporal sequences. (Elman, 1990, p1.)

All-attention architectures sacrifice this important temporal and incremental
aspect of human cognition and language processing. I therefore argue that such
models might be very useful to learn more about the structure of language from a
static perspective, but can – like symbolic models – not directly provide insight in
how the structures in language can be processed by humans. For that reason, in
this dissertation, I focus almost exclusively on recurrent architectures, and make
only little deviations to discuss attention-based models and convolutional models
to validate results.

1.2.2 Behavioural similarity

The second prerequisite concerns a model’s ability to represent the phenomena
that the researcher is interested in. In my case, this refers to the ability to correctly
process natural language and its hierarchical structure. When I started my PhD
project, very little literature was to be found on this topic. I could find theoretical
papers on what models could do in theory (e.g. Siegelmann and Sontag, 1995),
mathematical descriptions of how variable binding can be hardwired in a network
(e.g. Smolensky, 1990) and small scale studies that demonstrated that and how
(sometimes hand-crafted) recurrent networks can implement small context-free or
even context-sensitive languages (e.g. Gers and Schmidhuber, 2001; Rodriguez,
2001). I found very little on what models trained in an end-to-end fashion with
back-propagation learn when facing natural data.

This gap of knowledge resulted in the first major aim of my dissertation:
increasing our understanding of what neural networks learn when they are trained
with backpropagation on quite large amounts of data and to what extent they
can adequately deal with hierarchical structure. Most of the studies I present
focus on uncovering whether a specific aspect of hierarchical compositionality or
syntactic structure is learned under some particular circumstances. I consider
artificial setups, in which the hierarchical compositional structure is very crisp
and clear, but also more naturalistic scenarios, in which networks are trained on
noisy naturalistic data. While conducting these studies, I also discovered that
what exactly the requirements are that we would like models to fulfill is not well
specified and agreed upon. In other words, it is not clear what we would like
them to learn under which circumstances. In Chapter 4 of this dissertation, I
address this issue specifically, by teasing apart different aspects of processing of

1.3. Summary and outline 5

structure that may be important to different researchers, and testing for them
independently.

1.2.3 Model interpretability

Lastly, for a model to be useful as an explanatory model of a particular phenomenon,
it is important that we at least to some extent understand how it implements
this phenomenon, which is formulated in the third prerequisite. For symbolic
models, this requirement is easily fulfilled, because their parameters usually have
clear meanings – e.g. the probability that word X has more than one left dependent
(DMV, Klein and Manning, 2004). This makes them very suitable as explanatory
models. The meaning of the parameters (or ‘weights’) of neural networks is usually
unclear.

To use neural networks as explanatory models, it is thus important to develop
techniques to understand their behaviour and internal dynamics. The second aim
in almost all of my chapters is therefore to develop or test techniques to increase
our understanding of neural networks. One of these techniques, that I develop
and explore in different ways in many of the chapters, is diagnostic classification.
I will also cover several techniques borrowed and adapted from other fields.

1.3 Summary and outline

Overall, this thesis describes a series of studies that encompass the usefulness of
recurrent neural networks as explanatory models of human language processing.
These studies include extensive analyses of what aspects of hierarchical composi-
tionality and syntactic structure recurrent networks can learn, the development of
a set of techniques that can be used to analyse also future networks and an in-depth
analysis of what researchers may mean when they talk about compositionality
in the context of neural networks. At the end of this dissertation, I explore how
this knowledge could be exploited to improve the extent to which models show
the behaviour we desire, contextualise this research done in this dissertation and
elaborate on how I think this work has contributed to different fields.

Outline

This dissertation is divided in three parts, preceded by a chapter that describes
the relevant background to this dissertation. In this background chapter, I explain
the three main recurrent architectures I study and describe two strands of research
that have considered the abilities of such models to represent hierarchical structure
and compositionality.

6 Chapter 1. Introduction

Part 1 In part 1, consisting of Chapter 3 and Chapter 4, I consider artificial
setups. In the first of these chapters, I focus on the extent to which different
recurrent architectures can learn to process hierarchically compositional structures.
I also introduce diagnostic classification, one of the main interpretability techniques
proposed in this dissertation. In the second chapter, I present a study that takes a
closer look at what it means for a neural model to be able to process compositional
structure. I identify different components related to compositionality motivated
by linguistics and philosophy and propose a series of tests that aims to shed some
light on how they relate to each other.

Part 2 In part (Chapter 5, 6 and 7) I focus on language models, which are
trained on naturalistic data (in this dissertation: english sentences). These three
chapters all consider whether and how such language models can represent long-
distance relationships that indicate an understanding of hierarchical structure,
taking subject-verb agreement as a case study. To do so, they use different methods:
in Chapter 5, I use different versions and extensions of diagnostic classification;
in Chapter 6, I describe a study that uses neuron ablation and again diagnostic
classification; in Chapter 7, I develop generalised contextual decomposition.

Part 3 In Chapter 8, the last content chapter of this dissertation, I investigate
if the solution that a model finds can be changed by changing the learning signal
of the model. This chapter tests a hypothesis about a potential cause that models’
solutions sometimes deviate from desired solutions. Furthermore, in this chapter I
investigate if it is possible to understand from a trained model’s parameters if it
has learned a solution that incorporates structure.

Conclusion and discussion Chapter 9 contains the conclusion and a discussion
of this dissertation. In this chapter, I summarise and review the research I did,
speak briefly about its societal impact and sketch some paths for future work.

Chapter 2

Recurrent neural networks and
grammatical structure

In this dissertation, I explore the usefulness of artificial neural networks as ex-
planatory models of language processing. To do so, I consider two different topics:
I investigate whether artificial neural networks are able to learn the hierarchical
compositional structures assumed to be important for natural language, and I
develop a series of interpretability techniques that can be used to understand how
these models represent and process this. In the current chapter, I provide some
background information that helps the reader to understand and appreciate the
rest of this thesis.

In particular, I first provide a detailed description of the main models of interest
for this dissertation: recurrent neural networks (RNNs). For many purposes it
might be sufficient to understand these models on a global level; in the context
of this dissertation, it is useful to have a more detailed understanding of how
they work. In the next section, I therefore discuss in some detail the three most
prominent recurrent cells, providing both their mathematical description as well
as a more intuitive account of the functions of their components. I also briefly
explain how they are used to form different types of recurrent architectures.

Then, in Section 2.3 and 2.4, I describe two different approaches to understand
the extent to which neural networks can capture grammatical structure. These
approaches match the ones I take myself in part one and part two of this disserta-
tion. For both approaches I give several examples, of which I more elaborately
discuss one that I consider exemplary for this particular approach.

2.1 Recurrent neural networks

Recurrent neural networks (RNNs) are artificial neural networks that consist of one
or multiple layers of interconnected units that together process temporal inputs.
At any point in time, the state st of a recurrent neural network is computed based

7

8 Chapter 2. Recurrent neural networks and grammatical structure

on the current input and its previous state:

st = f(xt, st−1) (2.1)

Because of the recurrent connection of the network with its previous hidden state,
it can remember information from earlier in the input sequence and connect it
with the current input.

The difference between different recurrent cells resides in how the function to go
from one step to the next is defined. In what follows, I explain this computational
step for simple recurrent networks (SRNs), gated recurrent units (GRUs), and
long short term memory networks (LSTMs). All the described computation steps
concern one layer networks but can be easily extended to include more layers: the
current state of one layer can then simply be seen as the input for the next one.

2.1.1 Simple recurrent networks

The most elementary form of recurrent neural network is the Simple Recurrent
Network (SRN, Elman, 1990). The state of an SRN at time step t is defined by a
single vector ht. Mathematically, the network can be described as follows:

ht = tanh(Wxt + Uht−1 + b) (2.2)

The weight matrix W defines the transformation from the input to the hidden
state, the weight matrix U the transformation of the current hidden state. The
bias term b a fixed constant that is added at every step; it can be used by the
model to change the midpoint of the nonlinear activation function tanh which
wraps the entire processing step. W , U , and b are all learnable parameters of the
model.

2.1.2 Long short-term memory networks

While SRNs can in theory remember information from many time-steps back, in
practice they are often unable to learn dependencies that span over long ranges.
This inability is often associated with how recurrent neural networks are trained:
with gradient descent and backpropagation through time (Rumelhart et al., 1986).
For a long-distance dependency to be learned, there should be a flow of gradient
between the two dependents. In SRN models, this is often not the case, because
the gradient vanishes very quickly with distance.

In 1997, Hochreiter and Schmidhuber proposed the long short-term memory
(LSTM) network, which is specifically designed to circumvent this ‘vanishing
gradient effect’. The state of such an LSTM model at any time step t is defined
by not one but two vectors: the hidden state ht and the memory cell ct.

2.1. Recurrent neural networks 9

The introduction of gates The information flow from the current to the next
state of an LSTM model is modulated by three gates, that are computed by the
model itself, based on the current input and the previous hidden state of the
network:

ft = σ(Wfxt + Vfht−1 + bf) (2.3)

it = σ(Wixt + Viht−1 + bi) (2.4)

ot = σ(Woxt + Voht−1 + bo) (2.5)

These gates are called the forget, input and output gate, respectively, and can
take values between 0 and 1.

Memory cell To compute the state of the memory cell ct at the next time step,
first a ‘candidate memory cell’ activation is computed:

c̃t = tanh(Wc̃xt + Vc̃ht−1 + bc̃) (2.6)

The next memory cell activation ct of the network is a weighted sum between this
candidate activation and the previous memory cell state ct−1:

ct = ft � ct−1 + it � c̃t (2.7)

The contribution of these two components is decided by the previously defined
forget gate (Equation 2.3) and input gate (Equation 2.4). The forget gate deter-
mines how much of the previous hidden state is remembered. If the forget gate is
completely open (ft = 1), the entire content of the previous memory cell is carried
on to the next time step; if it is closed (ft = 0), all this content is forgotten.

The input gate instead modulates how much information flows in from the
candidate cell state c̃t, which contains information about the current input of
the network. An open input gate lets all information of ct pass to the next time
step, a closed input gate instead ignores any activation flowing from the current
input word. If the forget gate is completely closed and the input gate completely
open, the computation step to compute ct is identical to the computation of the
activations in a simple recurrent network.

Hidden state The next hidden state ht of the network is computed by multi-
plying the memory cell contents with the output gate of the network:

ht = ot � tanh(ct) (2.8)

In LSTM models, the hidden state ht is typically connected with an output layer
or, in case of a multilayer model, propagates its activation forward to the next
layer.

10 Chapter 2. Recurrent neural networks and grammatical structure

Long-distance dependencies The availability of gates allow the LSTM model
to easily track long-distance dependencies. An individual unit (or group of units)
can easily store information over long periods of time by opening its forget gate
and closing its input gate.

2.1.3 Gated recurrent units

Chung et al. (2014) introduced a gated recurrent network that is simpler than
the LSTM model. Their gated recurrent unit (GRU) does not have an explicit
memory cell. Like the SRN, its state consists of only one hidden state ht.

Reset gate Similar to an LSTM cell, a GRU computes a candidate state acti-
vation. In the GRU, this candidate state is itself modulated by a gate, called the
reset gate rt. This reset gate determines to what extent the next hidden state
depends on the current input and previous hidden state:

rt = σ(Wrxt + Urht−1 + br) (2.9)

h̃t = tanh(Wxt + rt � U(ht−1) + b) (2.10)

If the reset gate is completely open (rt = 1), all information of the previous
hidden state is passed on to the next hidden state. When rt is open, the candidate
hidden state computation is identical to the hidden state computation of the SRN.
If the reset gate is closed (rt = 0), the hidden state activations are ‘reset’, and the
candidate activations do not depend on the previous time step, but only on the
current input case. In that case, the computation matches the computation for a
feed-forward layer. The reset gate thus determines to what extent the computation
of ht is feed-forward or recurrent.

Forget gate To compute the next hidden activation ht from the previous hidden
activation ht−1 and the candidate activation h̃t, the GRU uses a single ‘update’
gate. This gate decides the extrapolation factor between the previous state and
the candidate state:

zt = σ(Wzxt + Uzht−1 + bz) (2.11)

ht = (1− zt)� ht−1 + zt � h̃t (2.12)

If the update gate is completely open (zt = 1), the next hidden state is
identical to the candidate hidden activation (if rt in that time step was 1 as well,
the processing step is identical to the processing step of an SRN). If the update
gate is closed, no information from the input passes through, and the next hidden
state is identical to the previous one.

2.2. Recurrent architectures 11

2.1.4 LSTM vs GRU

As they have fewer gates and have a less complex structure, GRU models are
computationally more efficient than LSTMs. While there are some papers that
point out differences between the computational power of GRUs and LSTMs with
finite-precision (e.g. Weiss et al., 2018), in practice their performance is often
comparable. In the studies presented in the rest of this dissertation, GRU models
sometimes outperformed LSTM models, while other times LSTM models showed
more desirable behaviour. I am not aware of any work that elaborately compares
GRU and LSTM models in different situations.

2.2 Recurrent architectures

When SRNs, LSTMs, and GRUs are used to perform a particular task, they are
typically embedded in a larger architecture that contains one or more recurrent
layers but usually also several other components. In this section, I describe two
types of recurrent architectures, as well as several components that are commonly
added to them.

2.2.1 Types of architectures

Recurrent architectures can be roughly divided into two categories. First, there are
architectures that generate predictions at every time step. I will refer to this type
of architectures with the term immediate-prediction architectures. Then, there
are architectures that first encode an entire input sequence and then generate an
output based on this encoding. They are often called encoder-decoder or seq2seq
models.

Immediate-prediction architectures Immediate-prediction architectures are
used for tasks that require immediate processing, such as language modelling or
speech processing. Typically, in tasks requiring immediate-prediction architec-
tures, the input space (consisting of the input words) is the same as the output
space, although this is not a strict requirement. I will use immediate-prediction
architectures in Chapter 5, 6 and 7.

Encoder-decoder models Encoder-decoder models are used for tasks that
require the generation of an output based on an entire input sequence. Encoder-
decoder architectures are used for tasks such as translation – in which case the
decoder itself is also a sequential model, or to assign labels to entire sequences
(e.g. sentiment classification). In the latter case, the decoder of the model may
be as simple as a feed-forward layer, while in the former case, the decoder can
also be a recurrent model. I will use encoder-decoder models with a sequential

12 Chapter 2. Recurrent neural networks and grammatical structure

decoder in Chapter 4 and 8), and encoder-decoder models with a simple simple
feed forward layer as decoder in Chapter 3.

2.2.2 Word embeddings

Recurrent cells define a how sequences of continuous input vectors are transformed
into sequences of continuous output vectors. However, the input sequences to
recurrent models usually consist of discrete symbols. This discrepancy is solved
by adding an embedding layer to the model, that transforms the discrete input
tokens (represented by one-hot vectors) into continuous vectors. This layer is
parametrised by a matrix whose values are learned along with the rest of the
model’s parameters. The number of columns of this matrix matches the number
of tokens in the input space; the number of rows is equal to the desired embedding
size. Each column represents the embedding of a particular input token.

2.2.3 Output layers

Like the inputs to recurrent models, commonly also the required outputs consist
of discrete symbols or classes. Architectures thus require also a mechanism to
map their continuous outputs back to a discrete space. To do so, models typically
include an output layer, which contains a matrix that maps the output of the
recurrent layer back to a vector with the correct number of classes (e.g. the
number of tokens or classes in the output space). The result of this is a continuous
vector with the right dimensions; this vector is then transformed into a probability
distribution over the output words or classes by applying a softmax function to it.
There are several methods to obtain a discrete prediction from this probability
distribution, the most popular of which are sampling a class or token from the
distribution, or simply using argmax to select the class or token with the highest
probability.

2.2.4 Attention

A component that is very frequently added to encoder-decoder models is an
attention mechanism (Bahdanau et al., 2015). The invention of this mechanism
started from the observation that the decoder always uses the same fix-length
vector to generate its output, irrespective of the length of the input. Bahdanau
et al. (2015) suggest that this my result in too much inormation loss and propose
to give the decoder model access to all encoder representations. To search these
representations for parts that are relevant to the current prediction, the model is
equipped with an attention mechanism. This mechanism is typically instantiated
by an additional matrix, that is used to compute a relevance score to every encoder
state. With those, a weighted average of those states is computed, which is then
given as additional input to the decoder.

2.3. Approach 1: artificial data 13

Relatively recently, a model was proposed that is based only on a multitude of
such attention mechanism (Vaswani et al., 2017). This model, which was named
Transformer by the authors, has achieved large successes on many NLP tasks. I
will use this model as test-case in Chapter 4, but will not otherwise explore it, for
reasons laid out before. I will use recurrent models with attention components in
Chapter 8 and Chapter 4.

2.3 Approach 1: artificial data

I discussed three recurrent cells and several components that are frequently
used along which such cells in recurrent architectures. In the remainder of this
chapter, I discuss two types of approaches that investigate to what extent recurrent
architectures can learn to process hierarchical structure, using either artificial or
naturalistic data. In this section, I start with discussing approaches using artificial
data, which can be divided into roughly two categories.

2.3.1 Formal grammars

In the earlier days of neural networks, a frequently wandered path to test neural
networks was to evaluate whether they can approximate formal languages at
different levels in the Chomsky hierarchy (CH). In such studies, a grammar is
defined – often a context-free grammar with specific types of embedded structures
– which is used to generate a corpus of sentences. An immediate-prediction
architecture (see subsection 2.2.1) is then trained to predict the sentences in this
corpus and evaluated on how well it does so. Not uncommonly, studies that follow
this paradigm also include an analysis of the state space trajectories within the
network.

Most studies considering formal languages have looked at SRNs. Some use
grammars with constructions specifically motivated by natural language (e.g.
Elman, 1991; Christiansen and Chater, 1999); others instead focus on formal
languages exemplary for particular classes in the Chomsky Hierarchy, such as
anbn (e.g. Rodriguez, 2001; Wiles and Elman, 1995; Rodriguez et al., 1999; Batali,
1994). Some studies have considered also gated recurrent neural networks (e.g.
Gers and Schmidhuber, 2001; Weiss et al., 2018).

2.3.2 Compositional signal-meaning mappings

A newly popular approach with artificial languages focuses on the extent to which
neural networks can represent compositional mappings from signals to meanings.
As such tasks require to first read a signal and then produce the correct meaning for
this signal, they require some kind of encoder-decoder model (see subsection 2.2.1).

14 Chapter 2. Recurrent neural networks and grammatical structure

Recently, several studies appeared that focused explicitly on the ability of networks
to infer compositional structure.

SCAN Quite a few recent studies consider the SCAN language. This language
describes a simple navigation task with input sentences like jump thrice or run
around left, which have to be translated into a series of actions (for instance JUMP
JUMP JUMP). The SCAN language was proposed by Lake and Baroni (2018) –
who used it to illustrate particular shortcomings of neural networks when it comes
to compositional rule learning – and was later used in several follow-up studies
(Loula et al., 2018; Bastings et al., 2018; Korrel et al., 2019; Dess̀ı and Baroni,
2019).

The lookup table task

The study I selected to discuss in this section assumes an even more minimal
setup than the SCAN language. In this task, called the lookup table task, the
atomic operations that form the basis of more complex compositions are not rules,
but simple lookup tables (Lǐska et al., 2018). The task then consists in computing
the outcome of a composition of one or more lookup tables applied to an input.

The lookup tables are defined as bijective mappings from the domain of all
binary strings of length L onto itself. For instance, a lookup table t1 may be
defined as:

t1 00 → 01
t1 01 → 11
t1 10 → 10
t1 11 → 00

When receiving an input sequence like t1 t2 00, the model should consecu-
tively apply its tables to the binary input string: in the current example, it should
first apply t2 to 00 and then apply t1 to the outcome of this computation.

Lookup tables as a navigation task Like SCAN, also the lookup table task
can be interpreted as a navigation task, where the tables are represented by paths
and the binary strings by locations. In Figure 2.1, I sketched an example that
matches with a setup with two lookup tables and four locations. If the hotel,
conference and park are location 00, 01 and 11, respectively, the sequence t1 t2

00 would be translated as From the hotel, take path t2, then path t1. The correct
outcome would be the park, which is where one ends up following these paths.

2.3. Approach 1: artificial data 15

Figure 2.1: Visualisation of the lookup table task as a navigation task. The tables
t1 and t2 are seen as paths, the binary strings 00, 01, 10 and 11 as locations.

Compositionality From the example above it is easy to see what kind of
compositional behaviour is desired: if a human knows how to walk from their
hotel to the conference site via path t2, and from the conference to a park via
route t1, they won’t have trouble going from their hotel to the park by composing
these two routes, even if they are unfamiliar in the city. Conversely, if a human
knows how to walk from the hotel to the park via the conference site, we’d expect
them to also be able to reach the park from the conference site if they arrived at
the conference from a different location, such as the restaurant where they had
lunch.

Results Lǐska et al. (2018) evaluate if LSTM-based encoder-decoder models
behave in a the desired compositional way, by testing if they are able to generalise
to path combinations from unseen locations (e.g. a model may have seen t1 t2

00 and t1 t2 01 during training and is then tested on t1 t2 11). To encourage
the models to interpret the inputs compositionally, they ask the model not only to
output the final location (output), but also the intermediate ones, including the
start location. For instance, in the previous example, the correct answer would
not just be “park”, but the entire list of locations that is visited: hotel, conference,
park.

Lǐska et al. (2018) train 50K LSTM models and report that only very few of
them find a solution that generalises in a compositional way: 2% of the models
have a test accuracy above 80%, 0.75% of the runs result in models that have

16 Chapter 2. Recurrent neural networks and grammatical structure

an accuracy higher than 90%. These findings suggest that LSTM models thus
can represent the desired compositional solutions, but – at least on this task – do
not frequently converge to them when they are trained with the current learning
regimes.

Both SCAN and the lookup-table task implement some notion of what it
means to be compositional. In part one of this dissertation (Chapter 3 and
Chapter 4), I consider two other artificial languages, that focus on different parts
of compositionality, hierarchy and structure, and I evaluate to what extent the
previously described findings also holds for those languages. In Chapter 8, I
reconsider the lookup table task and investigate if a change in learning signal can
elicit a change in the type of solution found by recurrent models.

2.4 Approach 2: naturalistic data

The approaches I described in the previous section considered models trained on
data that has structure explicitly built in. Another way of investigating if neural
networks can learn the types of structures required to adequately model natural
language is to instead consider neural networks that are trained on naturalistic
data, and probe their structural abilities. Most dominantly, such studies are done
with models trained to do machine translation (i.a. Shi et al., 2016; Belinkov
et al., 2017b; Blevins et al., 2018; Raganato and Tiedemann, 2018; Tenney et al.,
2019b; Vig and Belinkov, 2019) or language modelling (i.a. Linzen et al., 2016;
Wilcox et al., 2018; Jumelet and Hupkes, 2018; Giulianelli et al., 2018; Gulordava
et al., 2018). In general, such studies are relatively positive about the amount
of non-trivial structure that is picked up by (recurrent or non-recurrent) neural
networks. In this section, I review some of the main evidence for the ability of
recurrent language models to capture structure, upon which I build in part two of
this dissertation (Chapter 5, 6 and 7).

2.4.1 Language models as psycholinguistic subjects

The first study to probe the ability of neural language models to model hierarchical
structure was presented by Linzen et al. (2016), who proposed to assess this
by evaluating whether models can correctly process long-distance subject-verb
agreement, using a paradigm well known from psycholinguistics.

The premise of their test is that in English the form of a third-person present
tense verb depends on the number of its syntactic subject. For instance, if the
syntactic subject of a sentence is paper, the corresponding verb should be singular
(The paper is), whereas the plural subject papers would go with a plural verb
(The papers are). In the given example, the subject and verb are adjacent,
but, in English, subjects and verbs can be separated by an arbitrary number of
tokens. Such tokens can potentially include intervening attractor nouns which

2.4. Approach 2: naturalistic data 17

are irrelevant to the form of the main verb of the sentence, or even embedded
subject-verb pairs. Since identifying all subject-verb pairs in a sentence within
an arbitrarily large window of tokens requires some sort of syntactic analysis,
subject-verb agreement is a phenomenon that is commonly regarded as evidence for
the presence of hierarchical structure in natural language and can – by extension –
thus also be used to probe the abilities of neural networks to process hierarchical
structure.

2.4.2 The number agreement task

To test whether a model can correctly process subject-verb relationships, Linzen
et al. (2016) designed a task in which a model needs to predict the correct verb
number given a sentence prefix. For instance, building on top of the previous
example, a model might be given the sentence prefix

The paper that was written by several authors from the University of
Amsterdam and one from the University of Tilburg ...

and then has to predict that the correct verb number following this prefix is
singular. Linzen et al. (2016) created a data set containing circa 1.35 million
number prediction problems with present tense verbs, drawn from an automatically
parsed corpus with Wikipedia data. The sentences in this corpus differ with respect
to the number of words between the subject and the verb (later I will refer to
this distance with the term context size); the number of intervening nouns and
agreement attractors; and whether the intervening material contains a relative
clause.

2.4.3 Supervised number prediction

In their 2016 article, Linzen et al. primarily focus on LSTMs that are trained
directly on predicting the correct number of the main verb. They train an LSTM
with 50 hidden units that – when trained on 9% of the corpus and validated on 1%
– has a very low error (0.83%) on the remaining 90% of the corpus, which does not
increase considerably with the length of the intervening sentential material. They
conclude that with explicit supervision, LSTM models can very well learn the
number agreement task. The most difficult case is the one with multiple attractors
between the subject and the verb: for a sentence with four attractors with different
syntactic numbers, the error rate was 17.6%. Linzen et al. compare their results
with a baseline that only receives the nouns of the sentence as input and show
that this model performs significantly worse in all cases. Their overall conclusion
is that LSTM models can learn the number-prediction task very well when given
explicit supervision. Such models are thus able to approximate structure-sensitive
dependencies to some extent, although they still struggle with more difficult cases.

18 Chapter 2. Recurrent neural networks and grammatical structure

2.4.4 SV agreement in language models

Using the same task, Linzen et al. (2016) also evaluate how well neural language
models (thus trained only with a language modelling objective) can perform the
number prediction task. As in the previous case, the model is given the sentence
up to the main verb. Then, to evaluate the model’s performance for that particular
sentence, they compare the probabilities that the model assigns to the verb with
the correct number and the wrong number. The overall accuracy of the corpus is
determined by how often the network assigns a higher probability to the correct
verb form.1

Linzen et al. (2016) find that an LSTM language model with 50 hidden units
makes around eight times as many errors as the LSTM trained with explicit
supervision on the task and also does substantially worse than the noun-only
baselines. For difficult dependencies, the network performs worse than chance,
but slightly better than the noun-only baselines, suggesting that the networks are
confused by the attractors. To exclude the possibility that the results are due to
lack of training data or the model’s size, Linzen et al. (2016) repeat their study
using a large publically available language model (Jozefowicz et al., 2016) that is
trained on more data, has a larger vocabulary and two layers with 8192 units each.
While – in some cases – this language model outperformed the smaller language
model trained by Linzen et al., it still performed poorly with respect to previously
mention baselines, exhibiting a strong increase in error when even a single attractor
was present. The authors conclude that a language modelling objective is not
a sufficient signal to induce the syntactic knowledge that is required to process
long-distance dependencies.

2.4.5 SV agreement in language models, revisited

Later, the study of Linzen et al. was repeated and extended by a different – not
entirely disjoint – research group, who tested a number of different long-distance
dependencies for English, Italian, Hebrew and Russian (Gulordava et al., 2018).
The results do not match the earlier findings of Linzen et al. (2016): Gulordava
et al. (2018) find that an LSTM language model can solve the subject-verb
agreement problem well, comparably to the model supervised on the task that was
presented by Linzen et al. Furthermore, they find that the model still performs
reasonably well when the words in the sentence are replaced by syntactically
nonsensical words, and the model can thus not rely on semantic clues.

The results of Gulordava et al. (2018) convincingly demonstrate that models

1Linzen et al. noted that another possibility would be to aggregate the probability mass
over all plural and singular verbs. In a project I did on this topic with 3 master students we
considered this method for computing the accuracy on the number prediction task. We did not
find strong differences with respect to only comparing the probabilities of the two verb forms of
the verb that originally occurred in the corpus.

2.5. Summary 19

trained with a language modelling objective can in fact learn to represent non-
trivial grammatical structure, even when they can not rely on semantic cues. This
exciting finding forms the premise of part two of this dissertation (Chapter 5, 6
and 7), in which I replicate their results and investigate how recurrent language
models model these relationships.

2.5 Summary

In this chapter I discussed some background concepts important to appreciate
the content of this thesis. In particular, I described three recurrent cells – SRNs,
GRUs and LSTMs. I provided both a mathematical and an intuitive description
of their main components, and explained how they can be embedded in larger
architectures. All studies in this dissertation consider one or more of these three
cells types, and I will sometimes refer back to the explanations in this chapter
when a more detailed understanding of their inner dynamics is required.

I also described two types of approaches to investigate the extent to which
neural networks can understand structure: using either artificial or naturalistic
data. For both these approaches, I gave several examples and then selected one
specific study to discuss in more detail.

The multitude of studies on the topic illustrates the importance of evaluat-
ing the behaviour of neural models, but the variety in conclusions drawn from
those studies also exemplifies that whether neural networks can in fact learn to
process hierarchical compositional structure is still an open question. To better
understand whether and under which circumstances they learn interesting types
of structure more studies are required, as well as better interpretability techniques
to understand the meaning of the results. This observation forms the starting
point of this work, in which I address both these issues.

The remainder of this dissertation is divided in three parts. In part one, I
follow the first described controlled approach and use artificial signal-to-meaning
mappings to investigate how neural networks can learn to process hierarchical
compositional languages. To do so, I do not only look at their behaviour under
different circumstances and on different types of stimuli, but I also propose
techniques to investigate their hidden states (Chapter 3). Further, in Chapter 4, I
take a careful look at what it means and implies that a neural network is able to
process compositional structure. I consider several potential interpretations that I
formalise into concrete tests, which I apply to different architectures.

In the second part of this dissertation, I use setups with naturalistic data, that
directly build upon the studies described in Section 2.4. These studies illustrated
that recurrent neural language models can learn to process long-distance subject
verb agreement relationships, a very promising result regarding their potential
usefulness as explanatory models. However, these studies do not address how these
networks are implementing these feats, which is what I investigate in Chapter 5, 6

20 Chapter 2. Recurrent neural networks and grammatical structure

and 7. Also these chapters contain a mix of behavioural experiments intertwined
with the development of interpretability techniques.

In part three of this dissertation, I take a slightly different approach. I consider
the lookup-table task described in Section 2.3, but I do not only observe, but instead
try to change the types of solutions found with an additional feedback signal to the
model. As the capstone of this work, I then use several of the techniques proposed
earlier in the dissertation to investigate the difference between the solutions learned
with and without the additional learning signal.

Part One

Artificial languages

In the first part of this dissertation, I consider artificial languages. While
ultimately I am interested in the structures occurring in natural language, human
language is a complex phenomenon, of which many facets are still not well-
understood. Both symbolic structure and hierarchical compositionality are widely
considered to play an important role, but it is still not known what type of
structural or compositional skills are required to successfully model tasks involving
natural language.

As a consequence, insight in the structure-processing capabilities of neural net-
works is not easily acquired by studying natural language with all its complexities
directly. If it cannot be excluded that successful heuristics or syntax-insensitive
approximations exist, a positive result cannot be taken as evidence that a model
does in fact understand structure. Similarly, a negative result does not necessarily
indicate that a particular type of model cannot, it merely indicates that this exact
model instance did not capture it in this exact case.

Therefore, I first consider artificial languages to analyse the extent to which
neural networks can model languages with a hierarchical compositional semantics.
Artificial languages provide a clean setup in which different facets of processing
can be considered in isolation. In Chapter 3, I use this to focus specifically on the
ability of different types of recurrent architectures to process hierarchy. Because
both the training data and the test data are highly controlled, the impact of
different data properties can be easily tested. In Chapter 4, I exploit this property
by generating several data sets with different properties that consider different
aspects of compositional processing.

Additionally, well-understood data make it easier to formulate hypotheses
concerning potential strategies that models may be pursuing. This, in turn,
facilitates the development and assessment of different interpretation techniques
for the models, as we will see in Chapter 3.

Chapter 3

Diagnostic classification and the
arithmetic language

This chapter is the first of two chapters in which I use artificial data to analyse
the extent to which neural networks can model languages with a hierarchical
compositional semantics. I present a study that focuses explicitly on the aspect of
hierarchy and the internal strategies implemented by different types of networks.
I also introduce the notion of diagnostic classification, which will be a recurring
technique in this dissertation.1 In the next chapter, I take a broader perspective
on hierarchical compositionality, and dive deeper into what potential aspects of it
might be measurable in a model.

Outline In Section 3.1, I first present the artificial language that I use for my
study, the arithmetic language which consists of spelled out, nested, arithmetic
expressions. I discuss the language itself, but also potential formal strategies that
could be pursued to compute the meanings of the sentences and the predictions

1This chapter is based on my contributions to the work described in:

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and ‘diagnostic clas-
sifiers’ reveal how recurrent and recursive neural networks process hierarchical structure.
Journal of Artificial Intelligence Research, 61:907–926, 2018b

This paper was itself based on:

Dieuwke Hupkes and Willem Zuidema. Diagnostic classification and symbolic guidance to
understand and improve recurrent neural networks. In Proceedings of Neural Information
Processing Systems – Workshop track, 2017

Upon invitation, a short version of this paper was also presented at the journal track of
IJCAI2018:

Dieuwke Hupkes and Willem Zuidema. Visualisation and ’diagnostic classifiers’ reveal
how recurrent and recursive neural networks process hierarchical structure (extended
abstract). In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, pages 5617–5621, 7 2018.

23

24 Chapter 3. Diagnostic classification and the arithmetic language

that follow from them. In Section 3.2 I first consider whether three different
recurrent architectures can correctly compute the meaning of the sentences of this
language. The most important parts of this chapter then follow in Section 3.3 -
3.6, in which I describe how I applied a variety of analysis techniques to capture
the internal dynamics of the networks and introduce diagnostic classification. In
Section 5.7, I provide a brief conclusion of the study.

3.1 Arithmetic language

The arithmetic language used for the study described in this chapter was introduced
in the master thesis of Sara Veldhoen (2015). The vocabulary of this language
consists of words for all integers in the range {−10, . . . , 10}, the operators plus

and minus and the brackets (and). The phrases in the language – i.e. sequences of
words – comprise all grammatically correct, fully bracketed arithmetic expressions
that can be formed with these symbols. The (compositional) meaning of an
expression is the solution of the arithmetic expression that it represents. For
instance, the meaning of the phrase (ten minus (five plus three)) is 2.

Throughout this chapter, I often abbreviate the full forms such as left -

bracket five plus three right bracket as (5 + 3). I refer to expressions
and sets of expressions by using the number of numeral words they contain (see
Figure 3.1 for a formal definition). For instance, L5 refers to all expressions with
exactly 5 numerals and l5 is an expression belonging to L5. Table 3.1 contains
some example sentences of the arithmetic language, along with the name of the
subset they may appear in.

Form Meaning

vocab
{ -ten, -nine, ..., nine, ten,

plus, minus, left bracket, right bracket}
{-10, -9, . . . , 9, 10,

+, -, (,)}

L1 {-ten, -nine, ..., nine, ten} {-10, -9, . . . , 9, 10}

Lk
{(lm op ln) | lm∈Lm, ln∈Ln, op ∈ {plus, minus},

m+ n = k} 〈lm〉 〈 op 〉 〈 lm〉

Figure 3.1: Formal description of the sentences s in the arithmetic language and
their meanings 〈s〉.

3.1.1 Symbolic strategies

The symbolic nature of the arithmetic language allows us to formulate strategies
to compute the meaning of expressions, which can be used to aid the analysis of
the dynamics of the internal dynamics of a network while it processes sentences.

3.1. Arithmetic language 25

L1 one, -three, nine

L2 (five plus three)

L3 ((two minus -three) minus six), (two minus (-three minus six))

L4 (((-two minus seven) plus eight) plus -ten)

Table 3.1: Sentences from different subsets of the arithmetic language. Both
numerals, operators, and brackets are treated as words; words are represented by
n-dimensional numerical vectors.

Before moving on to the description of our models and experiments, I will describe
two possible strategies to incrementally solve arithmetic expressions.

result stack = [], mode stack = []
result = 0, mode = +
for symbol in expression do

if symbol == ‘(’ then
mode stack.append(mode)
result stack.append(result)
result = 0; mode = +

else if symbol == ‘)’ then
mode = mode stack.pop()
prev result =
result stack.pop()

result = apply(mode,
prev result, result)

else if symbol == ‘+’ then
mode = +

else if symbol == ‘-’ then
mode = -

else
result = apply(mode,
result, symbol)

end
return result

(a) Recursive strategy

mode stack = []
result = 0, mode = +
for symbol in expression do

if symbol == ‘(’ then
mode stack.append(mode)

else if symbol == ‘)’ then
mode = mode stack.pop()

else if symbol == ‘+’ then
pass

else if symbol == ‘-’ then
if mode == - then

mode = +
else

mode = -
else

result = apply(mode,
result, symbol)

end
return result

(b) Cumulative strategy

Figure 3.2: Different symbolic strategies for incrementally solving arithmetic
expressions. The function apply(mode, result, symbol) applies the operator
specified by mode (+,−) to the two numbers specified by result and symbol.

Recursive strategy

Perhaps the most obvious candidate for a symbolic strategy to compute the
meaning of an arithmetic expression involves traversing through the expression,

26 Chapter 3. Diagnostic classification and the arithmetic language

computing the outcome of all subtrees, and combining them to compute the
outcome of the full tree . To do this in an incremental fashion, the intermediate
result of the computation of the current subtree should be pushed onto a stack –
the result stack – whenever a new, smaller subtree begins. At that point, also
the operator that will later be used to integrate the outcome of the newly started
subtree with its parent should be stored on a stack. Because this stack determines
whether the procedure is in additive or subtractive mode, I call it the mode stack.
Figure 3.2a contains a procedural description of this strategy; For a worked-out
example indicating the stack contents at different time steps, see the upper part
of Figure 3.3.

Cumulative strategy

Alternatively, the meaning of a sentence from the arithmetic language can be
computed by accumulating the numbers immediately at the moment they are
encountered (see Figure 3.2b and the bottom part of Figure 3.3). In this case, a
prediction of the solution of the expression is maintained at any point during the
computation. Consequently, this cumulative strategy does not require a stack with
previous results, but it does require keeping track of previously seen operators to
decide whether the next number should be added or subtracted when a bracket
closes (in Figure 3.2b captured by the variable mode).

3.1.2 Predictions following from strategies

As illustrated in Figure 3.3, the cumulative and recursive strategies do not only
differ with respect to the computations they are executing, but also require different
memory contents. Both the cumulative and the recursive strategy require a stack
to store encountered operators. Consider for instance computing the outcomes
of the expressions (8 - ((5 - 7) - 2)) and (8 + ((5 - 7) - 2

), for which information about the previous series of operators is required to
understand whether the 2 should be subtracted or added to the subtotal. In
addition, the recursive strategy requires storage of the previously computed
outcomes of subtrees. These differences result in different predictions about the
sensitivity of the network to noise on the stack, implementation of the operator or
depth of an expression, and hence in different predictions about the difficulty of
processing certain structures under memory limitations and noise.

3.2 Can RNNs learn the arithmetic language?

I first assess to what extent (gated) recurrent neural networks can learn to correctly
process the deep hierarchical structure of sentences from the arithmetic language,
without being provided any explicit feedback on this structure. For this study,

3.2. Can RNNs learn the arithmetic language? 27

(5 - ((2 - 3) + 7))

0 0 5 5 0 0 2 2 -1 -1 -1 6 -1 -1

0 0 0 0
5

0
5
0

0
5
0

0
5
0

0
5
0

0
5

0
5

0
5

0

+ + + +
-

+
-
+

+
-
+

+
-
+

+
-
+

+
-

+
-

+
-

+

0 0 5 5 5 5 3 3 6 6 6 -1 -1 -1

+ + + - - - - + + - - - - +

+ + + +
-

+
-
-

+
-
-

+
-
-

+
-
-

+
-

+
-

+
-

+

result

result-stack

mode-stack

result

mode
mode-stack

input

Figure 3.3: Different strategies to compute the meaning of a sentence of the
arithmetic language. Top (in blue): mode-stack, result-stack, and current
mode of the recursive strategy; bottom (in green): cumulative result, mode and
mode-stack of the cumulative strategy.

I use an encoder-decoder architecture with a non-recurrent decoder. For the
encoder, I consider all three recurrent cells described in the previous chapter:
the SRN (Section 2.1.1), the LSTM (Section 2.1.2) and the GRU (Section 2.1.3).
Below, I describe the procedures I used for training and testing.

3.2.1 Training

I train 20 GRU, SRN and LSTM models on a randomly sampled sets of expressions
from L1, L2, L4, L5 and L7 (3000 expressions from each subset) with various
syntactic structures.2 The composition of lengths of the training set remains the
same across all experiments, but which exact expressions of these five lengths are
chosen depends on the random seed during initialisation of the experiment. For
both models, I use an input embedding size of 2, and a hidden layer size of 15. The
word embeddings are randomly initialised within a small range, and are trained
along with the rest of the model’s parameters. The models are trained on an error
signal backpropagated from a simple linear perceptron predicting the real-valued
solution of the expressions from the final hidden state, using Adam Kingma and Ba
(2015) as optimiser (learning rate=0.001, β1=0.9, β2=0.999, ε=1e-08, decay=0.0),
minibatches of size 24 and mean squared error as loss function. The models thus
have implicit access to the syntactic structure of sentences via the brackets, which
are presented to the network as words, but are not provided with explicit feedback
on this structure.

2For the implementation I use the Python library Keras Chollet et al. (2015) with Theano
Theano Development Team (2016) as backend. The Python package containing the source code of
this project can be found at https://github.com/dieuwkehupkes/processing_arithmetics.

28 Chapter 3. Diagnostic classification and the arithmetic language

3.2.2 Evaluation

To evaluate the resulting models, I create a test set containing a large sample
of expressions from L1, L2, . . . , L9. Except for L1 and L2, all these test sets
contain expressions that were not seen during training; L3, L6, L8, and L9 also
contain longer and shorter unseen structures. A summary of the results is plotted
in Figure 3.4.

SRNs Of the 20 trained SRN models, three did not learn to capture any
structural knowledge, reflected by a high error for short (but unseen) sentences
with three numerals (L3). Also the remaining 17 models have a high error
compared to the gated models: the best SRN model has an error high above the
average of the gated models. I have not thoroughly investigated the extent to
which the solutions learned by these models incorporate the syntactic structure of
the sentences. They have perhaps learned something, but from the experiments
conducted for this chapter it was not clear what.

Gated models The GRU and LSTM models, on the other hand, show a more
convincing ability to generalise. Their mean absolute error slowly increases with
the length of the sentences. Contrary to the SRN models, there is no error increase
visible for sentence lengths that were not included in the training set. These
results suggest that the gated recurrent models – at least to some extent – learn to
process the hierarchical structures of the expressions in the arithmetics language.
In the rest of his chapter, I focus on analysing the dynamics of the network while
processing such expressions.

L1 L2 L3 L4 L5 L6 L7 L8 L9
0

2

4

6

8

10

m
ea
n
ab
so
lu
te

er
ro
r GRU average

GRU best
LSTM average

LSTM best
SRN average

SRN best

Figure 3.4: Average and best mean absolute error for 20 GRU, LSTM and SRN
model instances. Error bars indicate standard error. Sentences of lengths that
were not included in the training set are bold-faced.

3.3. Interpreting hidden activations 29

3.3 Interpreting hidden activations

While there are quite some interesting studies focussing on investigating the
internal dynamics of neural networks, at the moment that I am this dissertation
this field is still very much in development. In this section, I briefly discuss some
of the previously proposed methods to inspect the internal behaviour of artificial
neural networks as well as their shortcomings. In the next section, I propose a
new method that addresses some of their shortcomings.

3.3.1 Individual cell dynamics

A potential strategy to gain a better understanding of the internal dynamics of
a recurrent neural network is to consider the interpretability of individual cells.
By plotting individual cell activations, Karpathy et al. (2015) discovered several
interpretable cells in a character-based neural language model, including cells
that keep track of the scope of quotes and cells that represent the length of the
sentence. We here apply this approach to the best-performing GRU model from
our experiments.

In Figure 3.5 I plot the hidden layer activations while the network is processing
three different input sequences. Next to the activations, I show the input sequence
(starting from the top) as well as the mode of operation of the cumulative strategy
in Figure 3.2 (i.e. + or -) at each point in time. Under the hidden layer activations,
I also show the weights of the output layer reading out the meaning of the sentence,
using the same colour scale as for the hidden layers (plotted at the right of the
figure).

From this picture, several interesting observations can be made. Both the
first cell (the first column from the left in all three graphs, black arrow) and
the twelfth cell (the fourth column from the right, black arrow) show a sharp
change in activation whenever the mode changes from + to -. The last layer of
the network (bottom of the figure) indicates that the leftmost cell is negatively
influencing the prediction of the solution of the expression, while the twelfth cell
is hardly involved. The very last cell (red arrow) seems to respond to a minus in
the input but appears to have also other functions. The tenth cell (blue arrow)
could potentially be representing the scope of a minus.

Studying hidden layer activations is an interesting puzzle and can – especially
for relatively low dimensional networks such as ours – give pointers to which
aspects should be studied in more depth. However, it is hard to draw definite
(and quantitative) conclusions, and the usefulness of the method decreases with
the dimensionality of the networks.

3.3.2 Gate activation statistics

Karpathy et al. (2015), in the same paper, also study gate activations, focusing in

30 Chapter 3. Diagnostic classification and the arithmetic language

Figure 3.5: Hidden layer activations of a trained GRU network while processing
different sequences. The input labels, along with the mode (addition/subtraction)
at every point in time are printed left of the activation values. The activation
values of cell 1 and 12 (black arrows) seem to be correlated with the mode, but it
is is not easy to determine whether this value is in fact computed by the network.
The 10th cell could be keeping track of the scope of a minus.

particular on the fraction of time that gates spend being left- or right-saturated
(activations less 0.1 than or more than 0.9, respectively). Such results are not easy
to interpret but might indicate what roles specific cells play in the information
processing a network performs. For example, a cell with a right-saturated update
gate remembers its previous activation, whereas a cell with a left-saturated update
gate and a left-saturated reset gate ignores all previous activations and bases its
value only on the current input. Are the cells mostly acting as a memory, in a
feed-forward fashion, or as standard recurrent cells without any additional form
of memory?

In Figure 3.6 I plot the left- and right-saturation statistics for a GRU network
for different lengths of expressions. As the dimensionality of our network is
considerably lower than that of the network considered by Karpathy et al. (2015),
we can easily visualise the gate saturation values for different sentence lengths in
the same plot. We observe that most update gates are either on the x- or y-axis.
Some cells (at the right of the picture) act as a memory a substantial amount
of the time. A few cells show an interesting context-dependency, spending an
increasing fraction of the time being right-saturated. The reset gate saturation
values show that several cells spend a considerable amount of time in ‘feedforward-
mode’ (indicated by a high fraction of left-saturation). For three update cells and
one reset gate cell, the activation appears to be dependent on the length of the
expression.

3.4. Diagnostic classification 31

(a) Reset gate r (Equation 4) (b) Update gate z (Equation 6)

Figure 3.6: Gate activation statistics of the update and reset gate of a GRU
model while processing sentences from different lengths. Following Karpathy et al.
(2015), each circle represents a gate in the GRU. Its position is determined by the
fraction of the time it is left- (activation value less than 0.1) or right-saturated
(activation value more than 0.9).

3.4 Diagnostic classification

As mentioned earlier in this work, the development of interpretability techniques
constitutes an important contribution of this dissertation. In the previous section,
I discussed some existing methods, that are primarily based on visual inspection.
While such methods might in some cases provide interesting hypotheses, they
also illustrate the need for further development of interpretability methods: the
potential conclusions that can be drawn from visual inspection concern only small
parts of the network’s overall behaviour and are often qualitative rather than
quantitative, as manually analysing the behaviour of cells over a large number of
examples is infeasible. Additionally, such visualisation methods are restricted to
finding functions or features that are encoded by one cell, while being insensitive to
operations distributed over multiple cells, or cells that encode multiple features at
the same time. Disentangling the behaviour of networks through visual inspection
of activations is searching for a needle in a haystack.

I therefore propose to use an alternative approach, that we call diagnostic
classification.3 Diagnostic classification is based on the idea that if a sequential
model is computing certain information, or merely keeping track of it, it should
be possible to extract this information from its internal state space. To test
whether a network is computing or representing a certain variable or feature,

3The name diagnostic classification was a result of a brainstorm session with Willem Zuidema
and Sara Veldhoen, both co-authors on the article where we first proposed to use this technique
(Veldhoen et al., 2016).

32 Chapter 3. Diagnostic classification and the arithmetic language

I determine the sequence of values that this variable or feature should take at
each step while processing a sentence. I then train an additional classifier – a
diagnostic classifier – to predict this sequence of variable values (representing our
hypothesis) from the sequence of hidden representations a trained network goes
through while processing the input sentence. If the sequence of values can be
predicted with a high accuracy by the diagnostic classifier, this indicates that the
hypothesised information is indeed computed by the network. Conversely, a low
accuracy suggests that this information is not represented in the hidden state.

Diagnostic classification is a generic method that addresses most of the short-
comings we listed for existing methods. It can be used to quantitatively test
hypotheses about neural networks that range from very simple to fully-fledged
(symbolic) strategy descriptions. For instance, diagnostic classifiers can be used
to test whether a network has an internal representation of certain features of
its input. Say that one wants to evaluate whether a network is keeping track
of the length of a sentence, another example taken from Karpathy et al. (2015),
one can simply train a diagnostic classifier to predict the value of this variable at
each point in time from the hidden state of the network while processing a corpus
of sentences. The accuracy of this diagnostic classifier will be high not only if
there is a single cell acting as a length counter, but also when multiple cells are
together encoding this information. Furthermore, the accuracy with which this
classifier can predict the sentence length from the sequence of hidden states gives
a quantitative measure of how well this information is kept track of. Analysing
the accuracy of the classifier in more detail (i.e. inspecting at which points it fails
to correctly predict the sentence length) or looking at its weights can provide
more insight in what the network is doing.

In a similar fashion, diagnostic classifiers can be used to probe the strategy
networks could be implementing on an algorithmic level (Marr, 1982), provided
such strategies can be translated into sequences of targets for each time step.
The cumulative and recursive strategy I defined in Figure 3.2b and Figure 3.2a,
respectively, result in very different predictions about the intermediate results
stored (and computed) during the processing of a sequence. For instance, after
seeing the word three in the sequence (five minus ((two mines three)

plus seven)), the recursive strategy should have a representation of the value
within the current brackets (which is -1), whereas the cumulative strategy should
maintain a representation of the value of the expression up to that point (6).

3.5 Cumulative or recursive?

I now use diagnostic classifiers to attempt to understand how the models I
trained are computing the meaning of arithmetic expressions. In particular, I will
focus on their algorithmic strategy, using the cumulative and recursive strategy
(Figure 3.2b and 3.2a) as working hypotheses. To test whether the network is

3.5. Cumulative or recursive? 33

◦ ◦ ◦

◦◦

(

◦ ◦ ◦

◦◦

five

◦ ◦ ◦

◦◦

minus

◦ ◦ ◦

◦◦

(

◦ ◦ ◦

◦◦

two

◦ ◦ ◦

◦◦

plus

◦ ◦ ◦

◦◦

three

◦ ◦ ◦

◦◦

)

◦ ◦ ◦

◦◦

)

◦ ◦ ◦

◦

0

◦ ◦ ◦

◦

5

◦ ◦ ◦

◦

5

◦ ◦ ◦

◦

5

◦ ◦ ◦

◦

3

◦ ◦ ◦

◦

3

◦ ◦ ◦

◦

0

◦ ◦ ◦

◦

0

◦ ◦ ◦

◦

0

Embedding

GRU

Perceptron

◦

0

Model

Diagnostic
Classi�er

Hypothesis: cumulative strategy result

1

Figure 3.7: Testing a single hypothesis with a diagnostic classifier.

following either one of these strategies, I train diagnostic classifiers to predict the
sequences of intermediate results of both these strategies, as well as the variable
mode used by the cumulative strategy to determine whether the next number
should be added or subtracted. As the diagnostic model should merely read out
whether certain information is present in the hidden representations rather than
perform complex computations itself, we use a simple linear model as diagnostic
classifier. Figure 3.7 shows the setup for training a diagnostic classifier to predict
the intermediate results for the cumulative strategy.

3.5.1 Diagnostic accuracies

We find that the values required for the cumulative strategy (mode and result)
can be more accurately predicted than the intermediate recursive strategy values
(see Figure 3.8a and 3.8b). From these findings, it appears unlikely that the
network implements a fully recursive strategy that employs a number stack of
intermediate results.

For the cumulative strategy, the predictions are generally accurate, even for
longer sentences. The same is true for the mode of subtraction of the cumulative
strategy (see Figure 3.8b), which can be predicted almost perfectly for sentences
up until length 5 (with accuracies in the range of 0.98 – 1.0), but is also accurately
kept track of for longer sequences (an accuracy 0.93 for L9 sentences). However,
the fit with the cumulative strategy is not perfect: the diagnostic classifiers trained
to test the cumulative hypothesis perform excellently for left-branching sentences
but show low accuracy for right-branching sentences. This is inconsistent with
the symbolic description of the cumulative strategy, where the stack is crucial for
left-branching sentences, but not relevant at all for right-branching sentences.

34 Chapter 3. Diagnostic classification and the arithmetic language

1 2 3 4 5 6 7 8 9 9L9R
0

50

100

m
ea

n
sq

u
ar

ed
er

ro
r

cumulative
recursive

(a) prediction of result

1 2 3 4 5 6 7 8 9 9R9L
0

0.5

1

ac
cu

ra
cy

(b) prediction of mode cumu-
lative

1 2 3 4 5 6 7 8 9 9L9R
0

0.5

1

p
ea

rs
on

r

(c) trajectory correlations

Figure 3.8: Results of diagnostic models for a GRU model on different subsets of
languages.

3.5.2 Plotting trajectories

To get a better insight in how the predictions of the diagnostic classifier develop
over time and to understand which are the points here it potentially goes wrong,
I compare the trajectories of the predicted variables with the trajectories of the
target variables while the network processes different sentences.

In Figure 3.9, I show the predictions of the diagnostic classifiers on two
randomly picked L9 sentences, along with their target trajectories as defined
by the hypotheses. These trajectories confirm that the curve representing the
cumulative strategy is much better predicted than the recursive one. A correlation
test over 5000 L9 sentences shows the same trend: pearson’s r = 0.52 and
0.95 for recursive and cumulative, respectively. Figure 3.8c shows the trajectory
correlations for test sentences of different lengths.

(((-9+ 0) + (6 + (-8 - 7))) + ((-3+-1) - (6 - -2)))
35
30
25
20
15
10
5
0
5

(((-9+ 0) + (6 + (-8 - 7))) + ((-3+-1) - (6 - -2)))
30
25
20
15
10
5
0
5

10
(((-6+10) - (((5 - 7) - 6) - -6)) - (10 - (8 + 5)))

10

5

0

5

10

15

(((-6+10) - (((5 - 7) - 6) - -6)) - (10 - (8 + 5)))
10

5

0

5

10

15

Figure 3.9: Trajectories of the cumulative (green, upper) and recursive (blue,
lower) classifier, along with their targets trajectories for the result values. Dashed
lines show target trajectories.

3.6. Refining the cumulative hypothesis 35

We also observe an important qualitative difference between the diagnostic
classifier trajectories and the target values: the diagnostic classifier trajectories
are smooth, changing value at every point in time, whereas the target trajectories
are jumpy and often stay on the same value for longer time spans. This once
more indicates that a refinement of the symbolic cumulative hypothesis, in which
information is integrated more gradually, would be more suitable for a network
like this.

3.6 Refining the cumulative hypothesis

The diagnostic classifier results presented in the previous section convincingly
demonstrate that trained networks accurately keep track of the operator mode

of the cumulative strategy, required to understand whether the next number
should be added or subtracted. What the results do not show is how the network
computes this variable.

((((3 - 1) - -5) - 4) - 2)

+ + + + + - - + - - + - - + - - +

+ ++ ++
+

++
++

++
++

++
++

++
++

++
+

++
+

++
+

++ ++ ++ + + +

0 0 0 0 3 3 2 2 2 7 7 7 3 3 3 1 1

- - - -

mode

subtotal

stack all

stack min

((((3 - 1) - -5) - 4) - 2)

+ + + + + - - + - - + - - + - - +

+ ++ ++
+

++
++

++
++

++
++

++
++

++
+

++
+

++
+

++ ++ ++ + + +

0 0 0 0 3 3 2 2 2 7 7 7 3 3 3 1 1

- - - -

mode

subtotal

stack all

stack min

(a) Left-branching, minus

(3 + (4 - (5 + (1 + -3))))

+ + + + + - - - - - - - - - - + +

+ + + ++ ++ ++ ++
-

++
-

++
-

++
--

++
--

++
--

++
--

++
-

++ +

0 3 3 3 7 7 7 2 2 1 1 4 4 4 4 4 4

- - - -+ -+ -+ -+ -

(b) Left-branching, mixed

(3 + (1 + (-2 + (4 + 3))))

+ + + + + + + + + + + + + + + + +

+ + + ++ ++ ++ ++
+

++
+

++
+

++
++

++
++

++
++

++
++

++
+

++ +

0 3 3 3 4 4 4 2 2 2 6 6 9 9 9 9 9

(c) Right-branching, plus

Figure 3.10: Three expressions and the values of mode and subtotal during
processing, plus two different examples of stacks used to compute the current
mode.

3.6.1 Two hypotheses

One possible way to compute the mode is to store the current mode on a stack
whenever an opening bracket is encountered, and pop the next mode from the
stack whenever a bracket closes (upper blue stack in Figure 3.10). Although
elegant for its simplicity, this solution is not consistent with the apparent ease
of processing left-branching expressions, which in the described strategy require
heavy employment of the stack. The more difficult right-branching expressions
instead, lead to accessing the stack only when all computation is already finished
(e.g. Figure 3.10b and 3.10c).

An alternative possibility is to start using the stack only when brackets are
preceded by a minus (lower, red stack in Figure 3.10). The stack for the latter
strategy is shorter and remains primarily empty for left-branching expressions
(see Figure 3.10a).

36 Chapter 3. Diagnostic classification and the arithmetic language

((-2 - (6 - ((8 + (-3 - 10)) - (-2 - 10)))) - (1 - -8))

0 0 0 0 1 1 1 2 3 3 3 4 4 4 4 3 2 2 3 3 3 3 2 1 0 0 0 1 1 1 1 0 0
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1

+ + + - - - + + + + + + + - - + + - - - + + - + - + - - - + + - +
1 1 1 1 1 1 1 1 1 1 1 1 1 1

mode
switch mode

close minus scope1+
minus scope1+
minus scope2+
minus scope3+

Figure 3.11: An example sentence with the values of different variables at different
points in the sentence. The sentence itself is written in black in the middle, the
values of the variable mode and whether or not this variable should change in
the next step (switch mode) are printed below. Above the sentence, I show the
values of the variables related to the prediction of the minus depth of the sentence.
For instance, the row close minus scope1+ indicates how many brackets should
be closed before the model is not within the scope of any minus anymore. This
feature takes the value 0 when the sentence starts and switches to 1 when the first
minus occurs. It then continues to count up with every opening bracket and down
with every closing bracket, until the end scope of the highest minus is reached.
The three rows above (minus scope1+, 2+ and 3+) represent binary variables that
indicate within the scope of how many minuses the model is at every point in
time. For clarity reasons, I did not print the zero values of binary features.

3.6.2 Computing scopes

One feature that distinguishes the full-stack computation of the operator mode
from the one where the stack is only employed after a minus (upper blue and
bottom red stack in Figure 3.10, respectively), is that the latter requires keeping
track of the scope of minus operators. I train diagnostic classifiers to test if the
hidden state encodes the property of being within the scope of at least one minus
(I call this feature minus scope1+), and how many closing brackets should still
be seen to close this scope (close minus scope1+). I refer to Figure 3.11 for a
worked out example of an expression and the values these variables take as the
expression progresses.

In Figure 3.12a, we see that virtually all networks maintain a representation
of minus scope1+ during processing. Furthermore, the error on the prediction of
the number of closing brackets that need to be encountered to close the scope of
the minuses is very low (Figure 3.12b), indicating that minus scope1+ is indeed
a salient feature for the network. Additional diagnostic classifiers (results not
plotted) show that also the scope of minuses of deeper levels (minuses that are
within the scope of another minus, such as minus scope2+ in Figure 3.11), can
be inferred from the hidden states of the networks. Together, these plots confirm
that the network indeed approximates the hypothesised cumulative strategy, for
which it found a short-cut that only employs a stack when a minus occurs in the
expression.

3.6. Refining the cumulative hypothesis 37

L1 L2 L3 L4 L5 L6 L7 L8L9
0.9

0.95

1

A
cc

u
ra

cy

LSTM best LSTM average
GRU best GRU average

(a) minus scope1+

L1 L2 L3 L4 L5 L6 L7 L8L9
0.9

0.95

1

A
cc

u
ra

cy

(b) close minus scope

Figure 3.12: Binary accuracy of diagnostic classifiers trained on predicting the
features minus scope1+ (left) and close minus scope (right) from the hidden
layer activations of trained models.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bias

GRU

LSTM

−20 −15 −10 −5 0 5 10 15 20

Figure 3.13: Diagnostic classifier weights to predict minus scope1+.

3.6.3 What is encoded where?

Aside from providing a way to quantitatively determine whether information is
encoded in the hidden states of a network, diagnostic classifiers can be also used to
inspect where and how this information is represented. There are many possible
ways to do so, I present one case study that revolves around understanding how
information and processes are distributed and located inside a neural network, an
aspect which may play a role when one wants to re-utilise learned functions and
address the problem of catastrophic forgetting (Goodfellow et al., 2013; McCloskey
and Cohen, 1989).

In Figure 3.13 I plot the values of the weights of the diagnostic classifiers
trained to predict the variable minus scope1+ for the best GRU and LSTM
models. Looking at these weights, the representation of this variable seems to
be distributed over several different units, that are connected to the diagnostic
classifier with a high weight. To measure the contributions of different units of the
network to the final accuracy, I test how well individual weights of the diagnostic
classifier predict the feature on their own, when all other weights of the classifier

38 Chapter 3. Diagnostic classification and the arithmetic language

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.4
0.5
0.6
0.7
0.8
0.9

1

Majority classifier

Minority classifier

A
cc

u
ra

cy

(a) GRU

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.4
0.5
0.6
0.7
0.8
0.9
1

Majority classifier

Minority classifier

(b) LSTM

Figure 3.14: Accuracy of individual diagnostic classifier weights in predicting
minus scope1+.

are set to 0. The result of this masking experiment tells a different story than the
weights visualisation: in both the LSTM and GRU model, there is one single unit
that can predict minus scope1+ with almost perfect accuracy on its own, without
using any of the other units (Figure 3.14a and Figure 3.14b, colours match the
weight visualisation in Figure 3.13). Whether this is an artefact of the training
regime leaving traces of previous attempts to solve the problem, a way to ensure
robustness of the network, or simply a consequence of the fact that different
functions implemented by the network are related, it is certainly worth exploring
further. Later, in Chapter 6, we will see another example in which a much larger
network maintains a very local representation of particular information.

3.6.4 Diagnosing gates

Diagnostic classifiers may also be used to diagnose gates. I investigate this
possibility by focusing on the gates of the best-performing GRU model. As the
function of gates is fundamentally different from the function of the hidden units
– they are meant to modulate the information flow rather than to encode and
memorise information and develop representations – the types of hypotheses for
gates differ from hypotheses for the hidden layer activations. For instance, a gate
would not likely maintain a prediction of the subtotal, as this is not impacting
how information should be processed by the hidden layer,4 but it may contain
information about the operator mode. We train diagnostic classifiers to predict
minus scope1+ and close minus scope1+, whether the mode should be switched
in the current time step (switch mode) and what the current mode is.

From the results in Figure 3.15a, we can see that minus scope1+ and close -

minus scope1+ are much better represented by the gates than the operator mode.

4And in fact, a diagnostic classifier to predict this value from the gates has a very low
accuracy, see Figure 3.15a.

3.7. Conclusion 39

A B C D E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A minus scope1+
C mode
B brackets to close
D switch mode
E subtotal

A
cc
u
ra
cy

update gate z
reset gate r

(a) Diagnostic classification ac-
curacy

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.4
0.5
0.6
0.7
0.8
0.9
1

Majority classifier

Minority classifier

left: update gate z

right: reset gate r

(b) Masked weights for in 1minus scope diagnostic clas-
sifier

Figure 3.15: Diagnosing the gates of the best GRU model.

This is in itself not surprising, as under the hypothesised strategy the former two
are sub-features used to compute the latter, and confirms our current strategy
hypothesis. Interestingly, contrary to the hidden layer, the computation of minus -

scope1+ seems to be distributed over the gate values, with no single gate value
predicting it with high accuracy on its own (Figure 3.15b). In the light of the
difference in function of the gates and the hidden layer, this is not entirely
surprising: while the hidden layer is required to keep track of minus scope1+, the
gate units have to use this information to decide how much every network unit
should contribute to the next time step. Furthermore, whereas a hidden layer unit
can send information to all gates, a gate unit impacts only one hidden layer unit,
making distribution of information over the gates more essential.5

Another striking observation is that for this particular model, the update gate
(left bars in Figure 3.15a) outperforms the reset gate (right bar) for all features.
Both the division of work between gates as well as their exact function is a largely
unexplored area, that is worth our consideration. This study demonstrates that
diagnostic classifiers could play a role in such a quest. While I will not dig deeper
into the functions of the gates for the arithmetics language, later, in Chapter 6, I
will discuss their role in the encoding of long-distance subject-verb relations in
language models.

3.7 Conclusion

In this chapter, I studied how different types of recurrent neural network process
hierarchical structures, using an arithmetic language as a convenient, idealised
task with unambiguous syntax and semantics. I showed that GRU and LSTM
models can learn to compute the meanings of sentences in the arithmetic language

5In Chapter 8, we see a similar difference between the way that information is represented in
hidden layer and gate activations.

40 Chapter 3. Diagnostic classification and the arithmetic language

and can generalise to longer expressions than the ones seen in training.
I presented a detailed analysis of how the models process these sequences,

starting from existing analysis techniques that mostly rely on visual inspection
of the hidden state space. To better understand what the network is doing, I
developed an approach based on training diagnostic classifiers on the internal
representations.

The qualitative and quantitative analyses of the results of a diagnostic classifier
allowed me to draw conclusions about possible strategies the network might be
following. In particular, I found that the successful networks follow a strategy very
similar to my hypothesised symbolic ‘cumulative strategy’. From this we learn
something about how neural networks may process languages with a hierarchical
compositional semantics and also provide an example of how we can open the black
box of the deep learning models in natural language processing when visualisation
alone is not sufficient.

Chapter 4

PCFG SET

In the previous chapter I, investigated how recurrent neural networks can process
a hierarchically structured artificial language. I first tested whether recurrent
networks can learn the predict the meanings of the hierarchically structured
sentences of this language and then focused on looking inside the model to
understand the underlying processes by which they do so. What I did not do
is provide an explicit motivation of why I specifically focused on hierarchy. In
this chapter, I take a slightly broader perspective and consider different aspects
of compositionality that may be considered important to be captured by neural
networks for them to adequately model the structure of language.

While I was writing this dissertation, the compositional abilities of neural
networks have attracted a considerable amount of attention. In the background
chapter of this dissertation, I already mentioned several studies that consider this
topic (Lake and Baroni, 2018; Lǐska et al., 2018; Loula et al., 2018). There are
many others that consider it from different angles (without claiming to be complete:
Bahdanau et al., 2018; Johnson et al., 2017; Saxton et al., 2019; Bowman et al.,
2015; Mul and Zuidema, 2019; Tran et al., 2018; Andreas, 2019; Saphra and Lopez,
2019a). Across these studies, there is quite some variation in the way that different
researchers test for compositionality and also in the conclusions that are drawn.
Some studies test if models are able to productively use symbolic rules, some
consider if models can segment inputs into reusable parts, others focus specifically
on models’ ability to process hierarchical structures. Some researchers conclude
that neural networks perform surprisingly well, whereas others are skeptical.

It is my conviction that an important reason for the differences in how re-
searchers test for compositionality as well as the discrepancy between their conclu-
sions is that there is little clarity on what exactly it means for a neural network
to behave compositionally. When can we say that a network behaves ‘composi-
tionally’? What should it imply when a network is considered compositional?
In this chapter, starting from the literature about compositionality in linguistics
and philosophy, I reflect upon these questions and propose a series of tests that

41

42 Chapter 4. PCFG SET

tease apart different aspects of compositionality and try to relate them to each
other. As a case study, I will illustrate the application of these tests to a recur-
rent sequence-to-sequence model and contrast these findings with the results for
convolution and attention-based models.1

Chapter outline This chapter is structured as follows. First, I briefly discuss
compositionality and explain and motivate the five concepts we consider in our
tests. Then, I discuss the artificial data that the tests we defined are applied to.
In Section 4.3 I describe the architectures that we used to showcase our tests. In
Section 4.4, I discuss the experiments and results.

4.1 Compositionality

There exist several versions of The principle of compositionality. My personal
favourite is the formulation by Partee (1995):

“The meaning of a whole is a function of the meanings of the parts
and of the way they are syntactically combined”

While there is ample support for this principle, there is less consensus about
its exact interpretation and practical implications. One important reason for
this is that the principle is not theory-neutral: it requires a theory of both
syntax and meaning, as well as functions to determine the meaning of composed
parts. Without these components, the principle of compositionality is formally
vacuous (Janssen, 1983; Zadrozny, 1994). because also trivial and intuitively
non-compositional solutions that cast every expression as one part and assign it
a meaning as a whole do not formally violate the principle of compositionality.
Furthermore, the principle of compositionality describes a property of a language,
not the property of a language user or learner. What does it mean for a learner
such as a neural network model to be compositional? Is it enough that it can
correctly model compositional data? Are there restrictions on how it has to do so?

In this section, I address this question by collecting different aspects of and
intuitions about compositionality from philosophy and linguistics and translating

1This chapter is a condensed and adapted version of the following paper:

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The compositionality
of neural networks: integrating symbolism and connectionism. To appear in Journal of
Artificial Intelligence Research (JAIR), 2019a.

This paper was accepted for publication at the Journal of Artificial Intelligence Research (JAIR)
and will appear in 2020. The experimental part of the project was conducted by Verna Dankers
and Mathijs Mul, under supervision of dr. Elia Bruni and I. The base language was proposed by
Mathijs Mul, the individual tests were designed in collaboration; many of the additional analysis
methods were proposed by me. The text of the article was primarily written by me, while the
plots are mostly made by Mathijs Mul and Verna Dankers.

4.1. Compositionality 43

(a) Systematicity

+

(b) Productivity (c) Localism

(d) Substitutivity (e) Overgeneralisation

Figure 4.1: Schematic depictions of the five tests for compositionality proposed in
this paper. (a) To test for systematicity, we evaluate models’ ability to recombine
known parts to form new sequences. (b) While the productivity test also requires
recombining known parts, the focus there lies on unboundedness: we test if
models can understand sequences longer than the ones they were trained on.
(c) The localism test targets how local the composition operations of models
are: are smaller constituents evaluated before larger constituents? (d) With the
substitutivity test, we evaluate how robust models are towards the introduction of
synonyms, and, more specifically, in which cases words are considered synonymous
by different models. (e) The overgeneralisation task evaluates how likely models
are to infer rules: is a model instantly able to accommodate exceptions, or does it
need more evidence to deviate from applying the general rule instantiated by the
rest of the data?

them into tests for neural networks. With this, I aim to provide an evaluation
paradigm that can be used to better understand the requirements for compositional
learning as well as the actual composition functions learned by neural models
trained end-to-end on a downstream task.

In particular, I describe tests that target (i) if models systematically recombine
known parts and rules (systematicity) (ii) if models can extend their predictions
beyond the length they have seen in the training data (productivity) (iii) if models’
composition operations are local or global (localism) (iv) if models’ predictions
are robust to synonym substitutions (substitutivity) and (v) if models favour rules
or exceptions during training (overgeneralisation). A schematic depiction of the
five tests is shown in Figure 4.1.

44 Chapter 4. PCFG SET

4.1.1 Systematicity

The first property we propose to test for – following many of the earlier-mentioned
studies on the compositionality of neural networks – is systematicity, a notion
frequently used in the context of compositionality. The term was introduced by
Fodor and Pylyshyn (1988) – notably, in a paper that argued against connectionist
architectures – who used it to denote that

“[t]he ability to produce/understand some sentences is intrinsically
connected to the ability to produce/understand certain others” (Fodor
and Pylyshyn, 1988, p. 25)

This ability concerns the recombination of known parts and rules: anyone who
understands a number of complex expressions also understands other complex
expressions that can be built up from the constituents and syntactical rules
employed in the familiar expressions. To use a classic example from Szabó (2012):
someone who understands ‘brown dog’ and ‘black cat’ also understands ‘brown
cat’.

Rules and memorisation

Fodor and Pylyshyn (1988) contrast systematicity with storing all sentences in an
atomic way, in a dictionary-like mapping from sentences to meanings. Someone
who entertains such a dictionary would not be able to understand new sentences,
even if they were similar to the ones occurring in their dictionary. Since humans
are evidently able to infer meanings for sentences they have never heard before,
they must use some systematic process to construct these meanings from the ones
they internalised before.

By the same argument, however, any model that is able to generalise to a
sequence outside its training space (its test set), should have learned to construct
outputs from parts it perceived during training and some rule of recombination.
Thus, rather than asking if a model is systematic, a more interesting question
is whether the rules and constituents the model uses are in line with what we
believe to be the actual rules and constituents underlying a particular data set or
language.

Testing systematicity

With our systematicity test, we aim to pull out that specific aspect, by testing
if a model can recombine constituents that have not been seen together during
training. In particular, we focus on combinations of words a and b that meet
the requirements that (i) the model has only been familiarised with a in contexts
excluding b and vice versa but (ii) the combination a b is plausible given the rest
of the corpus.

4.1. Compositionality 45

4.1.2 Productivity

A notion closely related to systematicity is productivity, which concerns the open-
ended nature of natural language: language appears to be infinite, but has to be
stored with finite capacity. Hence, there must be some productive way to generate
new sentences from this finite storage.2 While this ‘generative’ view of language
became popular with Chomsky in the early sixties (Chomsky, 1956), Chomsky
himself traces it back to Von Humboldt, who stated that ‘language makes infinite
use of finite means’.

Both systematicity and productivity rely on the recombination of known
constituents into larger compounds. However, whereas systematicity can be – to
some extent – empirically established, productivity cannot, as it is not possible
to prove that natural languages in fact contain an infinite number of complex
expressions. Even if humans’ memory allowed them to produce infinitely long
sentences, their finite life prevents them from doing so. Productivity of language
is therefore more controversial than systematicity.

Testing productivity

To separate systematicity from productivity, in our productivity test we specifically
focus on the aspect of unboundedness. We test whether different learners can
understand sentences that are longer than the ones encountered during training.
To test this, we separate sequences in the data based on length and evaluate
models on their ability to cope with longer sequences after having been familiarised
with the shorter ones.

4.1.3 Substitutivity

A principle closely related to the principle of compositionality is the principle of
substitutivity. This principle, which finds its origin in philosophical logic, states
that if an expression is altered by replacing one of its constituents with another
constituent with the same meaning (a synonym), this does not affect the meaning
of the expression (Pagin, 2003). In other words, if a substitution preserves the
meaning of the parts of a complex expression, it also preserves the meaning of
the whole. In the latter formulation, the correspondence with the principle of
compositionality itself can be easily seen: since substituting part of an expression
with a synonym changes neither the structure of the expression nor the meaning
of its parts, it should not change the meaning of the expression itself either.

As the principle of compositionality, the substitutivity principle in the context
of natural language is subject to interpretation and discussion. Husserl (1913)
pointed out that the substitution of expressions with the same meaning can result

2The term productivity also has a technical meaning in morphology, which we do not imply
here.

46 Chapter 4. PCFG SET

in nonsensical sentences if the expressions belong to different semantic categories
(the philosopher Geach (1965) illustrated this considering the two expressions
Plato was bald and baldness was an attribute of Plato, which are synonymous but
cannot be substituted in the sentence The philosopher whose most eminent pupil
was Plato was bald).

A second context that poses a challenge for the substitutivity principle concerns
embedded statements about beliefs. If X and Y are synonymous, this does not
necessarily imply that the expressions Peter thinks that X and Peter thinks that Y
are both true. In this work, we do not consider these cases, but instead focus on
the more general question: is substitutivity a salient notion for neural networks
and under what conditions can and do they infer synonymity?

Testing substitutivity

We test substitutivity by probing under which conditions a model considers two
atomic units to be synonymous. To this end, we artificially introduce synonyms
and consider how the prediction of a model changes when an atomic unit in an
expression is replaced by its synonym. We consider two different cases. Firstly, we
analyse the case in which synonymous words occur equally often and in comparable
contexts. In this case, synonymity can be inferred from the corresponding meanings
on the output side but is aided by distributional similarities on the input side.
Secondly, we consider pairs of words in which one of the words occurs only in very
short sentences (we will call those primitive contexts). In this case, synonymity
can only be inferred from the (implicit) semantic mapping, which is identical for
both words, but not from the context that those words appear in.

4.1.4 Localism

In its basic form, the principle of compositionality states that the meaning of a
complex expression derives from the meanings of its constituents and how they
are combined. It does not impose any restrictions on what counts as an admissible
way of combining different elements, which is why the principle taken in isolation
is formally vacuous.3 As a consequence, the interpretation of the principle of
compositionality depends on the strength of the constraints that are put on the
semantic and syntactic theories involved. One important consideration concerns –
on an abstract level – how local the composition operations should be.

When operations are very local (a case also referred to as strong or first-level
compositionality), the meaning of a complex expression depends only on its local
structure and the meanings of its immediate parts (Pagin and Westerst̊ahl, 2010;
Jacobson, 2002). In other words, the meaning of a compound is only dependent on

3We previously cited Janssen (1983), who proved this claim by showing that arbitrary sets
of expressions can be mapped to arbitrary sets of meanings without violating the principle of
compositionality, as long as one is not bound to a fixed syntax.

4.1. Compositionality 47

the meaning of its immediate ‘children’, regardless of the way that their meaning
was built up. In global or weak compositionality, the meaning of an expression
follows from its total (global) structure and the meanings of its atomic parts. In
this interpretation, compounds can have different meanings, depending on the
larger expression that they are a part of.

Carnap (1947) presents an example (similar to the one sketched in the previous
section) that nicely illustrates the difference between these two interpretations, in
which he considers sentences with tautologies. Under the view that the meaning of
declarative sentences is determined by the set of all worlds in which this sentence is
true, any two tautologies X and Y are synonymous. Under the local interpretation
of compositionality, this entails that also the phrases ‘Peter thinks that X ’ and
‘Peter thinks that Y ’ should be synonymous, which is not necessarily the case,
as Peter may be aware of some tautologies but unaware of others. The global
interpretation of compositionality does not give rise to such a conflict, as X and Y,
despite being identical from a truth-conditional perspective, are not structurally
identical. Under this representation, the meanings of X and Y are locally identical,
but not globally, if also the phrase they are a part of is considered.

For natural language, contextual effects, such as the disambiguation of a phrase
or word by a full utterance or even larger piece of discourse, makes the localist
account highly controversial. As a contrast, consider an arithmetic task, where
the outcome of 14 - (2 + 3) does not change when the subsequence (2+3) is
replaced by 5, a sequence with the same (local) meaning, but a different structure.

Testing localism

We test if a model’s composition operations are local or global by comparing
the meanings it assigns to stand-alone sequences to those it assigns to the same
sequences when they are part of other sequences. More specifically, we compare a
model’s output when it is given a composed sequence X, built up from two parts A
and B with the output the same model gives when it is forced to first separately
process A and B in a local fashion. If the model employs a local composition
operation that is true to the underlying compositional system that generated the
language, there should be no difference between these two outputs. A difference
between these two outputs, instead, indicates that the model does not compute
meanings by first computing the meanings of all subparts, but pursues a different,
more global, strategy.

4.1.5 Overgeneralisation

The previously discussed compositionality arguments are of mixed nature. Some –
such as productivity and systematicity – are intrinsically linked to the way that
humans acquire and process language. Others – such as substitutivity and localism
– are properties of the mapping from signals to meanings in a particular language.

48 Chapter 4. PCFG SET

While it can be tested if a language user abides by these principles, these principles
themselves do not relate directly to language users. To complete our set of tests
to assess whether a model learns compositionally, we include also a notion that
exclusively concerns the acquisition of the language by a model: we consider if
models exhibit overgeneralisation when faced with non-compositional phenomena.

Overgeneralisation (or overregularisation) is a language acquisition term, which
refers to the scenario in which a language learner applies a general rule in a case
that forms an exception to this rule. One of the most well-known examples, which
served also as the subject of the famous past-tense debate between symbolism
and connectionism (Rumelhart et al., 1986; Marcus et al., 1992), concerns the
rule that English past tense verbs can be formed by appending -ed to the stem
of the verb. During the acquisition of past tense forms, learners infrequently use
this rule also for irregular verbs, resulting in forms like goed (instead of went) or
breaked (instead of broke).

The relation of overgeneralisation with compositionality comes from the sup-
posed evidence that overgeneralisation errors provide for the presence of symbolic
rules in the human language system (see, e.g. Penke, 2012). In this work, we
follow this line of reasoning and take the application of a rule in a case where
this is contradicted by the data as evidence that the model in fact internalised
this rule. In particular, we regard a model’s inclination to apply rules as the
expression of a compositional bias. This inclination is most easily observed in
the case of exceptions, where the correct strategy is to ignore the rules and learn
on a case-by-case basis. If a model overgeneralises by applying the rules also to
such cases, we hypothesise that this in particular demonstrates compositional
awareness.

Testing overgeneralisation

We propose an experimental setup where a model’s tendency to overgeneralise
is evaluated by monitoring its behaviour on exceptions. We identify samples
that do not adhere to the rules underlying the data distribution– exceptions –
in the training data sets and assess the tendency to overgeneralise by observing
how architectures model these exceptions during training: (when) do they consis-
tently follow a global rule set, and (when) do they (over)fit the training samples
individually?

4.2 Data

As in the previous chapter, the task we consider consists in predicting the meaning
of input sequences. Contrary to the previous chapter, here, the meanings of the
sequences are sequential themselves. The task can thus be seen as a sequence-
to-sequence translation task, which requires an encoder-decoder model with a

4.2. Data 49

sequential decoder.

The input sequences of this task are sequences that are generated by a prob-
abilistic context-free grammar (PCFG), they are to be translated into output
sequences that represent their meanings. These output sequences are constructed
from input sequences by recursively applying the string edit operations that are
specified in the latter. We call this string edit task PCFG SET.

4.2.1 Input sequences: syntax

The input alphabet of PCFG SET contains three types of words: words for unary
and binary functions that represent string edit operations (e.g. append, copy,
reverse), elements to form the string sequences that these functions can be
applied to (e.g. A, B, A1, B1), and a separator to separate the arguments of a
binary function (,). The input sequences that are formed with this vocabulary
are sequences describing how a series of such operations are to be applied to a
string argument. For instance:

repeat A B C

echo remove first D , E F

append swap F G H , repeat I J

We generate input sequences with a PCFG, shown in Figure 4.2 (for clarity,
production probabilities are omitted). As the grammar we use for generation
is recursive, we can generate an infinite number of admissible input sequences.
Because the operations can be nested, the parse trees of valid sequences can
be arbitrarily deep and long. Additionally, the distributional properties of a
particular PCFG SET data set can be controlled by adjusting the probabilities
of the grammar and varying the number of input characters. We will use this to
naturalise the data set such that its distribution of lengths and depths correspond
to the distribution observed in a data set containing English sentences.

4.2.2 Output sequences: semantics

The meaning of a PCFG SET input sequence is constructed by recursively applying
the string edit operations specified in the sequence. This mapping is governed by
the interpretation functions listed in Figure 4.3. Following these interpretation
functions, the three sequences listed above would be mapped to output sequences
as follows:

repeat A B C → A B C A B C

echo remove first D , E F → E F F

append swap F G H , repeat I J → H G F I J I J

50 Chapter 4. PCFG SET

Non-terminal rules

S → FU S | FB S , S

S → X

X → XX

Lexical rules

FU → copy | reverse | shift | echo | swap | repeat
FB → append | prepend | remove first | remove second

X → A | B | . . . | Z | A2 | . . . | B2 | . . .

Figure 4.2: The context-free grammar that describes the entire space of grammat-
ical input sequences in PCFG SET. Rule probabilities (not depicted) can be used
to control the distributional properties of a PCFG SET data set. We will use
this property to make sure that our data matches a corpus with natural English
sentences in terms of length and depth distributions.

Unary functions FU : Binary functions FB:

copy x1 · · · xn → x1 · · · xn append x, y → x y

reverse x1 · · · xn → xn · · · x1 prepend x, y → y x

shift x1 · · · xn → x2 · · · xn x1 remove first x, y → y

swap x1 · · · xn → xn x2 · · · xn−1 x1 remove second x, y → x

repeat x1 · · · xn → x1 · · · xn x1 · · · xn
echo x1 · · · xn → x1 · · · xn xn

Figure 4.3: The interpretation functions describing how the meanings of PCFG
SET input sequences are built up compositionally.

The definitions of the interpretation functions specify the systematic procedure
by which an output sequence can be constructed from an input sequence, without
having to enumerate particular input-output pairs. In this sense, PCFG SET
differs from a task such as the lookup table task introduced by Lǐska et al. (2018)
– where functions must be exhaustively defined because there is no systematic
connection between arguments and the values to which functions map them – but
shares some aspects with SCAN (Lake and Baroni, 2018).

4.2.3 Data construction

PCFG SET describes a general framework for producing many different data
sets. We used several criteria to select the PCFG SET input-output pairs for our
experiments.

4.2. Data 51

0 5 10 15
depth

0

10

20

30

40

le
ng

th

(a) WMT17

0 5 10 15
depth

0

10

20

30

40

le
ng

th

(b) PCFG SET data

Figure 4.4: Distribution of lengths and depths in (a) the PCFG SET data and (b)
English WMT 2017 test data.

Naturalisation of structural properties

We use the probabilistic nature of the PCFG SET input grammar to enforce an
input distribution that resembles the statistics of a more natural data set in two
relevant respects: the length of the expressions and the depth of their parse trees.
To obtain these statistics, we use the English side of a large machine translation
corpus: WMT 2017 (Bojar et al., 2017). We parse this corpus with a statistical
parser (Manning et al., 2014) and extract the distribution of length and depths
from the annotated corpus. We then use expectation maximisation to tune the
PCFG parameters in such a way that the resulting bivariate distribution of the
generated data mimics the one extracted from the WMT data. In Figure 4.4a
and Figure 4.4b, respectively, we plot the distributions of the WMT data and a
sample of around ten thousand sentences of the resulting PCFG SET data.

Sentence selection

We set the size of the string alphabet to 520 and create a base corpus of 100
thousand distinct input-output pairs. We use 85% of this corpus for training, 5%
for validation and 10% for testing.

As argued earlier in this chapter, the fact that a data set is generated by a
compositional system does not necessarily imply that successfully generalising to a
particular test set requires knowing this underlying system. Often, a learner may
get away with concatenating memorised strings or following another strategy that
is unrelated to the compositional rules of the system. With PCFG SET, we aim

52 Chapter 4. PCFG SET

to create a task for which it should not be possible to obtain a high test accuracy
by following alternative strategies.

In particular, we assure that the train and test data are linked only by implicit
systematic rules, by never repeating the same arguments to an input function.
As a consequence, models should not profit from memorising the answers of
specific function-argument pairs. Furthermore, since the accuracy on PCFG SET
is directly linked to a model’s ability to infer and execute compositional rules, the
training signal a model receives during training should convey that a compositional
solution should be found. Thereby, we aim to give models the best possible chance
to learn a compositional solution.

4.3 Architectures

As a use-case for our compositionality test-suite, I now apply it to compare
three currently popular neural architectures for sequence-to-sequence language
processing: recurrent networks (Sutskever et al., 2014), convolutional neural
networks (Gehring et al., 2017b) and Transformer networks (Vaswani et al., 2017).
I explain their most important features, give a brief overview of their potential
strengths and weaknesses in relation to compositionality, and I describe how they
are implemented in our experiments.

w1

RNN

w2

RNN

w3

RNN

w4

RNN

Attention

(a) LSTMS2S

w1 w2 w3 w4

Conv Conv

Attention

(b) ConvS2S

w1 w2 w3 w4

Attention Attention Attention

Attention

(c) Transformer

Figure 4.5: High-level graphical depictions of the most important features of
the encoding mechanisms in LSTMS2S, ConvS2S, and Transformer models. (a)
LSTMS2S processes the input in a fully sequential way, iterating over the embedded
elements one by one in both directions before applying an attention layer. (b)
ConvS2S divides the input sequence into local fragments of consecutive items
that are processed by the same convolutions, before applying attention. (c)
Transformer immediately applies several global attention layers to the input,
without incrementally constructing preliminary representations.

4.3. Architectures 53

4.3.1 LSTMS2S

The first architecture we consider is a recurrent encoder-decoder model with
attention. This setup is considered to be the most basic of the three setups we
consider, but is still the basis of many MT applications (e.g. OpenNMT, Klein
et al., 2017) and has also been successful in the fields of speech recognition (e.g.
Chorowski et al., 2015) and question answering (e.g. He and Golub, 2016). We
consider the version of this model in which both the decoder and encoder are
LSTMs and refer to this setup with the abbreviation LSTMS2S.

Model basics

LSTMS2S is a fully recurrent, bidirectional model. The encoder processes an
input by iterating over all of its elements in both directions and incrementally
constructing a representation for the entire sequence. Upon receiving the encoder
output, the decoder performs a similar, sequential computation to unroll the
predicted sequence. Here, LSTMS2S uses an attention mechanism, which allows it
to focus on the parts of the encoded input that are estimated to be most important
at each moment in the decoding process.

The sequential fashion with which LSTMS2S model processes each input
potentially limits the model’s abilities to recombine components hierarchically.
While depth – and, as shown by Blevins et al. (2018), thus hierarchy – can
be created by stacking neural layers, the number of layers in popular recurrent
sequence-to-sequence setups tends to be limited. The attention mechanism of the
encoder-decoder setup positively influences the skills of LSTMS2S to hierarchically
process inputs, as it allows the decoder to focus on input tokens out of the
sequential order.

Model implementation

We use the LSTMS2S implementation of the OpenNMT-py framework (Klein
et al., 2017). We set the hidden layer size to 512, number of layers to 2 and the
word embedding dimensionality to 512, matching their best setup for translation
from English to German with the WMT 2017 corpus, which we used to shape the
distribution of the PCFG SET data. We use mini-batches of 64 sequences and
stochastic gradient descent with an initial learning rate of 0.1.

4.3.2 ConvS2S

The second architecture we consider is a convolutional sequence-to-sequence model.
Convolutional sequence-to-sequence models have obtained competitive results in
machine translation (Gehring et al., 2017a) and abstractive summarisation (Denil
et al., 2014). In this paper, we follow the setup described by Gehring et al. (2017b)
and use their nomenclature: we refer to this model with the abbreviation ConvS2S.

54 Chapter 4. PCFG SET

Model basics

ConvS2S uses a convolutional model to encode input sequences, instead of a
recurrent one. The decoder uses a multi-step attention mechanism – every layer
has a separate attention mechanism – to generate outputs from the encoded
input representations. Although the convolutions already contextualise informa-
tion in a sequential order, the source and target embeddings are also combined
with position embeddings that explicitly encode order. As at the core of the
ConvS2S model lies the local mechanism of one-dimensional convolutions, which
are repeatedly and hierarchically applied, ConvS2S has a built-in bias for creating
compositional representations. Its topology is also biased towards the integration
of local information, which may hinder modelling long-distance relations. However,
convolutional networks have found to maintain a much longer effective history than
their recurrent counterparts (Bai et al., 2018). Within ConvS2S, such distance
portions in the input sequence may be combined primarily through the multi-step
attention, which has been shown to improve the generalisation abilities of the
model compared to single-step attention (Dess̀ı and Baroni, 2019).

Model implementation

We use the ConvS2S setup that was presented by Gehring et al. (2017b). Word
vectors are 512-dimensional. Both the encoder and decoder have 15 layers, with
512 hidden units in the first 10 layers, followed by 768 units in two layers, all
using kernel width 3. The final three layers are 2048-dimensional. We train the
network with the Fairseq Python toolkit4, using the predefined fconv wmt en de

architecture. Unless mentioned otherwise, we use the default hyperparameters of
this library. We replicate the training procedure of Gehring et al. (2017b), using
Nesterov’s accelerated gradient method and an initial learning rate of 0.25. We
use mini-batches of 64 sentences, with a maximum number of tokens of 3000. The
gradients are normalised by the number of non-padded tokens in a batch.

4.3.3 Transformer

The last model we consider is the recently introduced Transformer model (Vaswani
et al., 2017). Transformer models constitute the current state-of-the-art in machine
translation and are becoming increasingly popular also in other domains, such as
language modelling (e.g. Radford et al., 2019). We refer to this setup with simply
the name Transformer.

4Fairseq toolkit: https://github.com/pytorch/fairseq

4.4. Experiments and results 55

Model basics

Transformers use neither RNNs nor convolutions to convert an input sequence
to an output sequence. Instead, they are fully based on a multitude of attention
mechanisms. Both the encoder and decoder of a transformer are composed
of a number of feed-forward layers, each containing two sub-layers: a multi-
head attention module and a traditional feed-forward layer. In the multi-head
attention layers, several attention tensors (the ‘heads’) are computed in parallel,
concatenated and projected. In addition to a self-attention layer, the decoder
has another layer, which computes multi-head attention over the outputs of the
encoder.

Since Transformers do not have any inherent notion of sequentiality, the input
embeddings are combined with position embeddings, from which the model can
infer order. For Transformer models, the cost of relating symbols that are far
apart is thus not higher than relating words that are close together, which –
in principle – should ease modelling long-distance dependencies. The setup of
attention-based stacked layers furthermore makes the architecture suitable for
modelling hierarchical structure in the input sequence that needs not necessarily
correspond to the sequential order. On the other hand, the non-sequential nature
of the Transformer could be a handicap as well, particularly for relating consecutive
portions in the input sequence. Transformers’ receptive field is inherently global,
which can be challenging in such cases.

Model implementation

We use a Transformer model with an encoder and decoder that both contain
6 stacked layers. The multi-head self-attention module has 8 heads, and the
feed-forward network has a hidden size of 2048. All embedding layers and sub-
layers in the network produce outputs of dimensionality 512. In addition to word
embeddings, positional embeddings are used to indicate word order. We use
OpenNMT-py5 (Klein et al., 2017) to train the model according to the guidelines
provided by the framework6: with the Adam optimiser (β1 = 0.9 and β2 = 0.98)
and a learning rate increasing for the first 8000 ‘warm-up steps’ and decreasing
afterwards.

4.4 Experiments and results

For every experiment, we conduct three runs per model type (LSTMS2S, ConvS2S
and Transformere) and report both the average and standard deviation of their

5Pytorch port of OpenNMT: https://github.com/OpenNMT/OpenNMT-py.
6Visit http://opennmt.net/OpenNMT-py/FAQ.html for the guidelines.

56 Chapter 4. PCFG SET

Experiment LSTMS2S ConvS2S Transformer

Task accuracy 0.79 ± 0.01 0.85 ± 0.01 0.92 ± 0.01

Systematicity∗ 0.53 ± 0.03 0.56 ± 0.01 0.72 ± 0.00

Productivity∗ 0.30 ± 0.01 0.31 ± 0.02 0.50 ± 0.02

Substitutivity, equally distributed † 0.75 ± 0.00 0.92 ± 0.00 0.96 ± 0.01

Substitutivity, primitive† 0.60 ± 0.01 0.58 ± 0.01 0.90 ± 0.00

Localism† 0.46 ± 0.00 0.59 ± 0.04 0.54 ± 0.02

Overgeneralisation∗ 0.68 ± 0.04 0.79 ± 0.06 0.88 ± 0.07

Table 4.1: General task performance and performance per tests for PCFG SET.
The results are averaged over three runs and the standard deviation is indicated.
Two performance measures are used: sequence accuracy, indicated by ∗, and
consistency score, indicated by †.

scores.7 We train all models of all architectures for 25 epochs, or until convergence,
and select the best-performing model based on the performance on the validation
set. Below, I describe the precise experiments we conducted and report their
results, going test by test. A summary is provided in Table 4.1.

4.4.1 Task accuracy

I first consider the correctness of the output sequences of the three different
architectures on the data as described in Section 4.2.3. In particular, I consider
their sequence accuracy, where only instances for which the entire output sequence
equals the target are considered correct. This accuracy measure is used to evaluate
the overall task performance, and later also for the systematicity, productivity
and overgeneralisation tests. In the rest of this chapter, I denote accuracy scores
with ∗.

The average task performance on the PCFG SET data for the three different
architectures is shown in the first row of Table 4.1. The Transformer outperforms
both LSTMS2S and ConvS2S (p ≈ 10−4 and p ≈ 10−3, respectively), with a
surprisingly high accuracy of 0.92. ConvS2S, in turn, is with its 0.85 accuracy
significantly better than LSTMS2S (p ≈ 10−3), which has an accuracy 0.79. The
scores of the three architectures are robust with respect to initialisation and order
of presentation of the data, as evidenced by the low variation across runs. I now
present a breakdown of this task accuracy on different types of subsets of the data.

7Some experiments, such as the localism experiment, can be conducted directly on models
trained for other tests and thus do not require training new models.

4.4. Experiments and results 57

1 2 3 4 5 6 7 8 9 10 11 12 13 14
depth

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

LSTMS2S
ConvS2S
Transformer

5 10 15 20 25 30 35 40 45 50
length

1 2 3 4 5 6 7 8 9 101112131415
number of functions

Figure 4.6: Sequence accuracy of the three models as a function of several properties
of the input sequences for the general PCFG SET test set: depth of input’s parse
tree, the input sequence’s length and the number of functions input sequence. The
results are averaged over three model runs and computed over ten thousand test
samples.

Impact of length, depth, and number of functions

We explore how the accuracy of the three different architectures develops with
increasing difficulty of the input sequences, as measured in the input sequence’s
depth (the maximum level of nestedness observed in a sequence), the input
sequence’s length (number of tokens) and the number of functions in the input
sequence. In Figure 4.6, I show the average accuracy for all three architectures as
a function of depth, length and number of functions in the input. Unsurprisingly,
the accuracy of all architecture types decreases with the length, depth, and number
of functions in the input. All architectures have learned to successfully model
sequences with low depths and lengths and a small number of functions (reflected
by accuracies close to 1). Their performance drops for longer sequences with more
functions. Overall the Transformer > ConvS2S > LSTMS2S trend is preserved
across the different data subsets.

Function difficulty

Since the input sequences typically contain multiple functions, it is not possible to
directly evaluate whether some functions are more difficult for models than others.
On sequences that contain only one function, all models achieve a maximum
accuracy. To compare the difficulty of the functions, we create one corpus with
composed input sequences and derive for each function a separate corpus in which
this function is applied to those composed input sequences. We then express the
comparative difficulty of a function for a model as this model’s accuracy on the
corpus corresponding to this function. For example, to compare the functions
echo and reverse, we create two minimally different corpora that only differ with
respect to the first input function in the sequence (e.g. echo append swap F G H

, repeat I J and reverse append swap F G H , repeat I J), and compute

58 Chapter 4. PCFG SET

0.6 0.7 0.8 0.9 1.0
accuracy

repeat
reverse

swap
shift

prepend
echo

append
copy

remove_first
remove_second

(a) LSTMS2S

0.6 0.7 0.8 0.9 1.0
accuracy

(b) ConvS2S

0.6 0.7 0.8 0.9 1.0
accuracy

(c) Transformer

Figure 4.7: Accuracy of the three models per PCFG SET function, as computed
by applying the different functions to the same complex input sequences.

the model’s accuracy on both corpora.8 The results are shown in Figure 4.7.
The ranking of functions in terms of difficulty is similar for all models, sug-

gesting that the difficulties are to a large extent stemming from the objective
complexity of the functions themselves, rather than from specific biases in the
models. In some cases, it is very clear why. The function echo requires copying the
input sequence and repeating its last element – regardless of the bias of the model
this should be at least as difficult as copy which requires just to copy the input.
Similarly, prepend and append require repeating two string arguments, whereas
for remove first and remove second only one argument needs to be repeated.
The latter functions should thus be easier, irrespective of the architecture. The
relative difficulty of repeat reflects that generating longer output sequences proves
challenging for all architectures. As this function requires to output the input
sequence twice, its output is around twice as long as the output of another unary
function applied to an input string of the same length.

An interesting difference between architectures occurs for the function reverse.
For both LSTMS2S and ConvS2S this is a difficult function (although repeat

is even harder than reverse for LSTMS2S). For the Transformer, the accuracy
for reverse is on par with the accuracies of echo, swap and shift, functions
that are substantially easier than reverse for the other two architectures. This
difference follows directly from architectural differences: while LSTMS2S and
ConvS2S are forced to encode ordered local context – as they are recurrent or
apply local convolutions – the Transformer is not bound to such an ordering and
can thus more easily deal with inverted sequences.

4.4.2 Systematicity

The task accuracy for PCFG SET already reflects whether models are able to
recombine functions and input strings that were not seen together during training.

8Note that the since inputs to unary and binary functions are different, we have to use two
different corpora to compare binary and unary function difficulty. The unary and binary function
scores in Figure 4.7 are thus not directly comparable.

4.4. Experiments and results 59

In the systematicity test, we focus explicitly on the ability of model to interpret
pairs of functions that were never seen together while training.

Test details

We evaluate four pairs of functions: swap repeat, append remove second, re-
peat remove second and append swap.9 We redistribute the training and test
data such that the training data does not contain any input sequences including
these specific four pairs, and all sequences in the test data contain at least one.
After this redistribution, the training set contains 82 thousand input-output pairs,
while the test set contains 10 thousand examples. Note that while the training
data does not contain any of the function pairs listed above, it still may contain
sequences that contain both functions. E.g. reverse repeat remove second A

B , C D cannot appear in the training set, but repeat reverse remove second

A B , C D might.

Results

Following the task accuracy, also for the systematicity test the Transformer
model obtains higher scores than both LSTMS2S and ConvS2S (p ≈ 10−2 and
p ≈ 10−3, respectively). The difference between the latter two, however, is for
this test statistically insignificant (p ≈ 10−1). The relative differences between
the Transformer model and the other two models gets larger. In Table 4.2, we
show the average accuracies of the three architectures on all four held-out function
pairs.

The large difference between task accuracy and systematicity is to some extent
surprising, since PCFG SET is constructed such that a high task accuracy requires
systematic recombination. As such, these results serve as a reminder that models
may find unexpected solutions, even for very carefully constructed data sets. A
potential explanation for this particular discrepancy is that, due to the slightly
different distribution of the systematicity data set, the models learn a different
solution than before. Since the functions occurring in the held-out pairs are slightly
under-sampled, it could be that the models’ representations of these functions are
not as good as the ones they develop when trained on the regular data set.

A second explanation, to which our localism test will lend more support, is that
models do treat the inputs and functions systematically, but analyse the sequences
in terms of different units. Obtaining a high accuracy for PCFG SET undoubtedly
requires being able to systematically recombine functions and input strings, but it
does not necessarily require developing separate representations that capture the
semantics of the different functions individually. For instance, if there is enough

9To decrease the number of dimensions of variation, we keep the specific pairs of functions
fixed during evaluation: rather than varying the function pairs evaluated across runs, we vary
the initialisation and order of presentation of the training examples.

60 Chapter 4. PCFG SET

LSTMS2S ConvS2S Transformer

swap repeat 0.40 ± 0.04 0.49± 0.02 0.53± 0.03

append remove second 0.54 ± 0.04 0.46± 0.03 0.80± 0.02

repeat remove second 0.66 ± 0.02 0.67± 0.01 0.80± 0.01

append swap 0.48 ± 0.03 0.56± 0.01 0.73± 0.01

All 0.53± 0.03 0.56± 0.01 0.72± 0.00

Table 4.2: The average sequence accuracy per pair of heldout compositions for
the systematicity test.

evidence for repeat copy, a model may learn to directly apply the combination
of these two functions to an input string, rather than consecutively appealing to
separate representations for the two functions. Thus, to compute the output of
a sequence like repeat copy swap echo X, the model may apply two times a
pair of functions, instead of four separate functions. Such a strategy would not
necessarily harm performance in the overall data set, since plenty of evidence for
all function pairs is present, but it would affect performance on the systematicity
test, where this is not the case. While larger chunking to ease processing is not
necessarily a bad strategy, we argue that it is desirable if models can also maintain
a separate representation of the units that make up such chunks, which may be
needed in other contexts.

4.4.3 Productivity

In Figure 4.6, we saw that longer sequences are more difficult for all models, even
if their length and depth fall within the range of lengths and depths observed in
the training examples. There are several potential causes for this drop in accuracy.
It could be that longer sequences are simply more difficult than shorter ones: they
contain more functions, and there is thus more opportunity to make an error.
Additionally, simply because they contain more functions, longer sequences are
more likely to contain at least one of the more difficult functions (see Figure 4.7).
Lastly, due to the naturalisation of the distribution of lengths, longer sequences
are underrepresented in the training data. There is thus fewer evidence for long
sequences than there is for shorter ones. As such, models may have to perform
a different kind of generalisation to infer the meaning of longer sequences than
they do for shorter ones. Their decrease in performance when sequences grow
longer could thus also have been explained by a general poor ability to generalise
to lengths outside their training space, a type of generalisation sometimes referred
to with the term extrapolation.

With our productivity test, we focus purely on this extrapolation aspect, by
studying models’ ability to successfully generalise to longer sequences, which we

4.4. Experiments and results 61

Depth Length #Functions

min max avg min max avg min max avg

Productivity
Train 1 8 3.9 3 53 16.3 1 8 4.4
Test 4 17 8.2 14 71 33.0 9 35 11.5

PCFG SET
Train 1 17 4.4 3 71 18.4 1 35 5.2
Test 1 17 4.4 3 71 18.2 1 28 5.1

Table 4.3: The average, minimum and maximum length, depth, and number of
functions for the train and test set of the productivity test. We provide the same
measures for the PCFG SET test data set for comparison.

.

will call the model’s productive power.

Test details

To test for productivity, we redistribute the training and testing data so that there
is no evidence at all for longer sequences in the training set. Sequences containing
up to eight functions are collected in the training set, consisting of 81 thousand
sequences, while input sequences containing at least nine functions are used for
evaluation and collected in a test set containing ten thousand sequences. The
average, minimum and maximum length, depth, and number of functions for the
train and test set of the productivity test are shown in Table 4.3.

Results

The overall accuracy scores on the productivity test in Table 4.1 demonstrate that
all models have great difficulty with extrapolating to sequences with a longer length
than those seen during training. The Transformer drops to a mean accuracy of
0.50; LSTMS2S and ConvS2S have a testing accuracy of 0.30 and 0.31, respectively.
Relatively speaking, removing evidence for longer sequences thus resulted in a 62%
drop for LSTMS2S, a 65% drop in ConvS2S, and a 46% drop for the Transformer.
Both in terms of absolute and relative performance, the Transformer model thus
has a much greater productive potential than the other models, although its
absolute performance is still poor.

Comparing just the task accuracy and productivity accuracy of models shows
that models have difficulty with longer sequences but does still not give a definitive
answer about the source of this performance decrease. Since the productivity test
set contains on average longer sequences, we cannot see if the drop in performance
is caused by poor productive power or by the inherent difficulty of longer sequences.

62 Chapter 4. PCFG SET

4 5 6 7 8 9 10 11 12 13 14
depth

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

LSTMS2S
ConvS2S
Transformer

15 20 25 30 35 40 45 50
length

9 10 11 12 13 14 15
number of functions

Productivity
Task Success

Figure 4.8: Accuracy of the three models on the productivity test set as a function
of several properties of the input sequences: depth of the input’s parse tree, the
input sequence’s length and the number of functions present. The results are
averaged over three model runs and computed over ten thousand test samples.

In Figure 4.8, I show the performance of the three models in relation to depth,
length and number of functions of the input sequences (blue lines) compared with
the task accuracy of the standard PCFG SET test data for the same lengths as
plotted in Figure 4.6. For all models, the productivity scores are lower for almost
every depth, length and number of functions. This decrease in performance is
solely caused by the decrease in evidence for such sequences: the total number
of examples that models were trained on is the same across the two conditions,
and the absolute difficulty of the longer sequences is as well. With these two
components factored out, we conclude that models in fact struggle to productively
generalise to longer sequences.10

Impact of length, depth, and number of functions

The depth plot in Figure 4.6 also provides some evidence for the inherent difficulty
of deeper functions: it shows that all models suffer from decreasing test accuracies
for higher depths, even if these depths are well-represented in the training data.
When looking at the number of functions, the productivity score of the Transformer
is worse than its overall task success for any considered number of functions. The
scores for LSTMS2S and ConvS2S are instead very similar to the ones they reached
after training on the regular data. This shows that functions with high depths are
difficult for LSTMS2S and ConvS2S, even when some of them are included in the
training data.

Interestingly, considering only the development of the productivity scores (in

10To stop their generation of the answer, models have to explicitly generate an end of sequence
(<eos>) symbol. A reasonable hypothesis concerning the low scores on longer sequences is that
they are due to models’ inability to postpone the emission of this <eos> symbol. We dub this
problem the <eos>-problem. To test whether the low scores are due to early <eos> emissions,
we compute how many of the wrongly emitted answers were contained in the right answer.
For LSTMS2S, ConvS2S and Transformer this was the case in 22%, 6% and 8% of the wrong
predictions. These numbers illustrate that the <eos>-problem indeed exists, but is not the main
source of the poor productive capacity of the different models.

4.4. Experiments and results 63

blue), it appears that both the LSTMS2S and ConvS2S are relatively insensitive
to the increasing length as measured by the number of tokens. Their performance
is just as bad for input sequences with 20 or 50 characters, which is on a par
with the scores they obtain on the longest sequences after training on the regular
data. Apparently, shorter sequences of unseen lengths are as challenging for these
models as sequences of extremely long lengths. Later, in the localism experiment,
we will find more evidence that this sharp difference between seen and unseen
lengths is not accidental, but characteristic for the representations learned by
these two types of models.

4.4.4 Substitutivity

While the previous two experiments were centered around models’ ability to
recombine known phrases and rules to create new phrases, we now focus on the
extent to which models are able to draw analogies between words. In particular,
we study under what conditions models treat words as synonyms. We consider
what happens when synonyms are equally distributed in the input sequences and
the case in which one of the synonyms only occurs in primitive contexts.

Test details

We randomly select two unary and two binary functions (swap, repeat, append
and remove second), for which we artificially introduce synonyms during training:
swap syn, repeat syn, append syn and remove second syn. Like in the system-
aticity test, we keep those four functions fixed across all experiments, varying
only the model initialisation and order of presentation of the training data. The
introduced synonyms have the same interpretation functions as the terms they
substitute, so they are semantically equivalent to their counterparts. We consider
two different conditions that differ in the syntactic distribution of the synonyms
in the training data.

Equally distributed synonyms For the first substitutivity test we randomly
replace half of the occurrences of the chosen functions F with Fsyn, keeping the
target constant. Originally, the individual functions appeared in 39% of the
training samples. After synonym substitution they appear in approximately 19%
of the training samples. In this test, F and Fsyn are distributionally similar, which
should facilitate inferring that they are synonyms.

Primitive synonyms In the second and more difficult substitutivity test, we
introduce Fsyn only in primitive contexts, where F is the only function call in the
input sequence. Fsyn is introduced in 0.1% of the training set samples, resulting
in one appearance of Fsyn for approximately four hundred occurrences of F . In

64 Chapter 4. PCFG SET

this primitive condition, the function F and its synonymous counterpart Fsyn are
distributionally not equivalent

Evaluation For the substitutivity test, we do not evaluate models’ accuracy,
but instead assess their robustness to meaning-invariant synonym substitutions in
the input sequence. Rather, we evaluate models based on the interchangeability
of F with Fsyn, rather than measuring whether the output sequences match the
target. The most important point is not whether a model correctly predicts the
target for an adapted input sequence, but whether its prediction matches the
prediction it made before the transformation. We measure this using a consistency
score, which expresses a pairwise equality, where a model outputs on two different
inputs are compared to each other, instead of to the target output. Like with
accuracy, also here only instances for which there is a complete match between
the compared outputs are considered correct.

The consistency metric allows us to evaluate compositionality aspects, isolated
from task performance. Even for models that may not have a near-perfect task
performance and therefore have not mastered the rules underlying the data, we
want to evaluate whether they consistently apply and generalise the knowledge
they did acquire. We use the consistency score for the current substitutivity test
and later for the localism tests. In the next sections, consistency scores are marked
with †.

Equally distributed substitutions

For the substitutivity experiment where words and synonyms are equally dis-
tributed, Transformer and ConvS2S perform nearly on par. They both obtain
a very high consistency score (0.96 and 0.92, respectively). In Table 4.4, we see
that both architectures put words and their synonyms closely together in the
embedding space, truly respecting the distributional hypothesis. Surprisingly,
LSTMS2S does not identify that two words are synonyms, even in this relatively
simple condition where the words are distributionally identical. Words and syn-
onyms are at very distinct positions in the embedding space, although the distance
between them is smaller than the average between all words in the embedding
space. We hypothesise that this low score of the LSTM-based models reflects the
architecture’s inability to draw the type of analogies required to model PCFG
SET data, which is also mirrored in its relatively low overall task accuracy.

Primitive substitutions

The primitive substitutivity test is substantially more challenging than the equally
distributed one, since models are only shown examples of synonymous expressions
in a small number of primitive contexts. This implies that words and their
synonyms are no longer distributionally similar and that models are provided

4.4. Experiments and results 65

LSTMS2S ConvS2S Transformer
Token ED P Other ED P Other ED P Other

repeat 0.51 0.59 0.96 0.11 0.36 0.86 0.09 0.36 0.80
remove second 0.32 0.33 0.97 0.16 0.62 0.87 0.07 0.36 0.77
swap 0.41 0.36 0.93 0.17 0.36 0.90 0.09 0.40 0.79
append 0.32 0.35 0.97 0.12 0.50 0.83 0.07 0.38 0.73

Average 0.39 0.41 0.96 0.14 0.46 0.86 0.80 0.37 0.77

Consistency 0.76 0.61 - 0.96 0.61 - 0.98 0.88 -

Table 4.4: The average cosine distance between the embeddings of the indicated
functions and their synonymous counterparts in the equally distributed (ED) and
primitive (P) setups of the substitutivity experiments. For comparison, the average
distance from the indicated functions to all other regular function embeddings is
given under ‘Other’. These distances were very similar across the two substitutivity
conditions and are averaged over both.

much fewer evidence for the meaning of synonyms, as there are simply fewer
primitive than composed contexts.

While the consistency scores for all models decrease substantially compared
to the equally distributed setup, all models do pick up that there is a similarity
between a word and its synonym. This is reflected not only in the consistency scores
(0.60, 0.58 and 0.90 on average for LSTM, convolution and Transformer based
models, respectively), but is also evident from the distances between words and
their synonyms, which are substantially lower than the average distances to other
function embeddings (Table 4.4). For the LSTM-based model, the average distance
is very comparable to the average distance observed in the equally distributed
setup. Its consistency score, however, goes down substantially, indicating that
word distances (computed between embeddings) give an incomplete picture of how
well models can account for synonymity when there is a distributional imbalance.

Synonymity vs few-shot learning The consistency score of the primitive
substitutivity test reflects two skills that are partly intertwined: the ability to
few-shot learn the meanings of words from very few samples and the ability to
bootstrap information about a word from its synonym. As already observed in
the equally distributed experiment for the LSTMS2S, it is difficult to draw hard
conclusions about a model’s ability to infer synonymity when it is not able to
infer consistent meanings of words in general. When a model has a high score, on
the other hand, it is difficult to disentangle if it achieved this high score because it
has learned the correct meaning of both words separately, or because it has in fact
understood that the meaning of those words is similar. That is, the consistency

66 Chapter 4. PCFG SET

LSTMS2S ConvS2S Transformer

Consistency score all .60 ± .01 .58 ± .01 .90 ± .00

Consistent correct .53 ± .01 .54 ± .01 .85 ± .00

Consistent incorrect .06 ± .00 .04 ± .00 .05 ± .00

Consistency across incorrect samples .14 ± .01 .09 ± .01 .32 ± .02

Table 4.5: Consistency scores for the primitive substitutivity experiment, ex-
pressing pairwise equality for the outputs of synonymous sequences. Along with
the overall consistency, we also show the breakdown of this score into correct
(consistent correct) and incorrect (consistent incorrect) pairs, the scores if only
correct (consistent correct) and incorrect as well as the ratio of consistent output
pairs among all incorrect output pairs. A pair is considered incorrect if at least
one of its parts is incorrect.

score does not tell us whether output sequences are identical because the model
knows they should be the same, or simply because they are both correct. In the
equally distributed setup, the low word embedding distances for the ConvS2S and
the Transformer strongly pointed to the first explanation. For the primitive setup,
the two aspects are more difficult to take apart.

Error consistency To separate a model’s ability to few-shot learn the meaning
of a word from very few primitive examples and its ability to bootstrap information
about synonyms, we compute the consistency score for model outputs that do not
match the target output (incorrect outputs). When a model makes identical but
incorrect predictions for two input sequences with a synonym substitution, this
cannot be caused by the model merely having correctly learned the meanings of
the two words. It can thus be taken as evidence that it treats the word and its
synonyms indeed as synonyms.

In Table 4.5, we show the consistency scores for all output pairs (identical
to the scores in Table 4.1), the breakdown of this score into correct (consistent
correct) and incorrect (consistent incorrect) output pairs, and the ratio of incorrect
output pairs that is consistent. The scores in row 2 and 3 show that the larger
part of the consistency scores for all models is due to correct outputs. In row 4,
we see that models are seldom consistent on incorrect outputs. The Transformer
maintains its first place, but none of the architectures can be said to treat a word
and its synonymous counterpart as true synonyms.

An interesting difference occurs between LSTMS2S and ConvS2S, whose
consistency scores on all outputs are similar, but quite strongly differ in consistency
of erroneous outputs. These scores suggest that the convolution-based architecture
is better at few-shot learning than the LSTM-based architecture, but the LSTM-
based models are better at inferring synonymity. These results are in line with

4.4. Experiments and results 67

the embedding distances shown for the primitive substitutivity experiment in
Table 4.4, which are on average also lower for LSTMS2S than for ConvS2S.

4.4.5 Localism

In the localism test, we investigate if models compute the meanings of input
sequences using local composition operations, in accordance with the hierarchical
trees that specify their compositional structure.

Test details

We tets for localism by considering models’ behaviour when a sub-sequence in
an input sequence is replaced with its meaning. Thanks to the recursive nature
of the PCFG SET expressions and interpretation functions, this is a relatively
straightforward substitution in our data. If a model uses local composition
operations to build up the meanings of input sequences, following the hierarchy
that it is dictated by the underlying system, its output meaning should not change
as a consequence of such a substitution.

Unrolling computations We compare the output sequence that is generated
by a model for a particular input sequence with the output sequence that the same
model generates when we explicitly unroll the processing of the input sequence.
That is, instead of presenting the entire input sequence to the model at once, we
force the model to evaluate the outcome of smaller constituents before computing
the outcome of bigger ones, in the following way: we iterate through the syntactic
tree of the input sequence and use the model to compute the meanings of the
smallest constituents. We then replace these constituents by the model’s output
and use the model to again compute the meanings of the smallest constituents in
this new tree. This process is continued until the meaning for the entire sequence
is found. A concrete example is visualised in Figure 4.9.

To separate a model’s ability to generalise to test data from the procedure
it follows to compute the meanings of sentences, we conduct the localism test
on sentences that were drawn from the training data. We randomly select five
thousand sequences from the training set. On average, unrolling the computation
of these sequences involves five steps.

Evaluation We evaluate a model by comparing the final output of the enforced
recursive method to the output emitted when the sequence is presented in its
original form. Crucially, during evaluation we focus on checking whether the
two outputs are identical, rather than if they are correct. If a model wrongfully
emits B A for input sequence prepend B , A, this is not penalised in this ex-
periment, provided that the regular input sequence yields the same prediction
as its hierarchical variant. This method of evaluation matches the previously

68 Chapter 4. PCFG SET

Model

Model

Model

C A B B

ABprependCappendecho

A BCappendecho

C A Becho

Figure 4.9: An example of the unrolled computation of the meaning of the
sequence echo append C , prepend B , A for the localism test. We unroll the
computation of the meaning of the sequence by first asking the model to compute
the meaning o1 of the smallest constituent prepend B , A and then replace the
constituent by this predicted meaning o1. In the next step, we use the model to
compute the meaning of the then smallest constituent echo o1, and replace the
constituent in the sequence with the model’s prediction for this constituent. This
process is repeated until the meaning of the entire sequence is computed, in steps,
by the model. This final prediction (C A B B in the picture) is then compared
with the model’s prediction on the entire sequence (not shown in the picture). If a
model follows a local compositional protocol to predict the meaning of an output
sequence, these two outputs should be the same.

mentioned consistency score that was also used in the previous section for the
substitutivity test.

Results

None of the evaluated architectures obtains a high consistency score for this exper-
iment (0.46, 0.59 and 0.54 for LSTMS2S, ConvS2S and Transformer, respectively).
Also in this test, the Transformer models rank high, but the best-performing
architecture is the convolution-based architecture (significant in comparison with
the LSTMS2S with p ≈ 10−4, insignificant in comparison with the Transformer
with p ≈ 10−2). Since the ConvS2S models are explicitly using local operations,
this is in line with our expectations.

Input string length To understand the main cause of the relatively low scores
on this experiment, we manually analyse 300 samples (100 per model type), in
which at least one mistake was made during the unrolled processing of the sample.
We observe that the most common mistakes involve unrolled samples that contain
function applications to string inputs with more than five letters. An example of
such a mistake would be a model that is able to compute the meaning of reverse
echo A B C D E but not the meaning of reverse A B C D E E. As the outputs
for these two phrases are identical, it is clear that this inadequacy does not stem
from models’ inability to generate the correct output string. Instead, it indicates

4.4. Experiments and results 69

that the model does not compute the meaning of reverse echo A B C D E by
consecutively applying the functions echo and reverse. We hypothesise that,
rather, models generate representations for combinations of functions that are
then applied to the input string at once.

Function representations While developing ‘shortcuts’ to apply combinations
of functions all at once instead of explicitly unfolding the computation does
not necessarily contradict compositional understanding – imagine, for instance,
computing the outcome of the sum 5 + 3 - 3 – the results of the localism
experiment do point to another interesting aspect of the learned representations.
Since unrolling computations mostly leads to mistakes when the character length
of unrolled inputs is longer than the maximum character string length seen during
training, it casts some doubt on whether the models have developed consistent
function representations.

If a model truly understands the meaning of a particular function in PCFG
SET, it should in principle be able to apply this function to an input string of
arbitrary length. Note that, in our case, this ability does not require productivity
in generating output strings, since the correct output sequences are not distribu-
tionally different from those in the training data (in some cases, they may even
be exactly the same). Contrary to other setups, a failure to apply functions to
longer sequence lengths can thus not be explained by distributional or memory
arguments. Therefore, the consistent failure of all architectures to apply functions
to character strings that are longer than the ones seen in training suggests that,
while models may have learned to adequately copy strings of length three to five,
they do not necessarily consider those operations the same.

To check this hypothesis, we test all functions in a primitive setup where we
vary the length of the string arguments they are applied to.11 For a model that
develops several length-specific representations for the same function, we expect
the performance to go down abruptly when the input string length exceeds the
maximum length seen during training. If a model instead develops a more general
representation, it should be able to apply learned functions also to longer input
strings. Its performance on longer strings may drop for other, practical, reasons,
but this drop should be more smooth than for a model that has not learned a
general purpose representation at all.

The results of this experiment, plotted in Figure 4.10, demonstrate that all
models have learned to apply all functions to input strings up until length five, as
evidenced by their near-perfect accuracy on the samples of these lengths. On longer
lengths, however, none of the models performs well. For all runs, the performance
of LSTMS2S immediately drops to zero when string arguments exceed length five,
the maximum string length seen during training. The model does not seem to be

11For binary functions, only one of the two string arguments exceeds the regular argument
lengths.

70 Chapter 4. PCFG SET

2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of characters

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(a) LSTMS2S

2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of characters

reverse

append

(b) ConvS2S

2 3 4 5 6 7 8 9 10 11 12 13 14 15
number of characters

(c) Transformer

Figure 4.10: Accuracy of the three architectures on different functions with
increasingly long character string inputs. The maximum character string length
observed during training is 5. While Transformer and ConvS2S can, for most
functions, generalise a little beyond this string length, LSTMS2S models cannot.

able to leverage a general concept of any of the functions. The convolution-based
and Transformer model do exhibit some generalisation beyond the maximum
string input length seen during training, indicating that their representations are
more general. Their average accuracy reaches zero only for input arguments of
more than 10 characters, suggesting that the descending scores may be due to
factors of performance rather than competence. The accuracies for Transformer
and ConvS2S are comparable for almost all functions, except reverse, for which
the ConvS2S accuracy drops to zero for length six in all three runs. Interestingly,
none of the three architectures suffers from increasing the character length of the
first and second argument to remove first and remove second, respectively (not
plotted).

4.4.6 Overgeneralisation

In our last test, we focus on the learning process, rather than on the final solution
that is implemented by converged models. In particular, we study if – during
training – a model overgeneralises when it is presented with an exception to a rule
and – in case it does – how much evidence it needs to see to memorise the exception.
Whether a model overgeneralises indicates its willingness to prefer rules over
memorisation, but while strong overgeneralisation characterises compositionality,
more overgeneralisation is not necessarily better. An optimal model, after all,
should be able to deal with exceptions as well as with the compositional part of
the data.

Test details

As the language defined through the PCFG is designed to be strictly compositional,
it does not contain exceptions. We therefore manually add them to the data set,
which allows us to have a large control over their occurrence and frequency.

4.4. Experiments and results 71

Exceptions We select four pairs of functions that are assigned a new mean-
ing when they appear together in an input sequence: reverse echo, prepend
remove first, echo remove first and prepend reverse. Whenever these func-
tions occur together in the training data, we remap the meaning of those functions,
as if an alternative set of interpretation functions is used in these few cases. As
a consequence, the model has no evidence for the compositional interpretation
of these function pairs, unless it overgeneralises by applying the rule observed in
the rest of the training data. For example, the meaning of echo remove first

A , B C would normally be B C C, but has now become A B C. The remapped
definitions, which we call exceptions, can be found in Table 4.6.

Input Remapped to Target

Original Exception

reverse echo A B C echo copy A B C C C B A A B C C

prepend remove first A , B , C remove second append A , B ,C C B A B

echo remove first A , B C copy append A , B C B C C A B C

prepend reverse A B , C remove second echo A B , C C B A A B B

Table 4.6: Examples for the overgeneralisation test. The input sequences in the
data set (first column, Input) are usually presented with their ordinary targets
(Original). In the overgeneralisation test, these input sequences are interpreted
according to an alternative rule set (Remapped to), effectively changing the
corresponding targets (Exception).

Exception frequency In our main experiment, the number of exceptions in
the data set is 0.1% of the number of occurrences of the least occurring function
of the function pair F1F2. We present also the results of a grid-search in which we
consider exception percentages of 0.01%, 0.05%, 0.1% and 0.5%.

Results

We monitor the accuracy of both the original and the exception targets during
training and compare how often a model correctly memorises the exception target
and how often it overgeneralises to the compositional meaning, despite the evidence
in the data. To summarise a model’s tendency to overgeneralise, we take the
highest overgeneralisation accuracy that is encountered during training. For
more qualitative analysis, we visualise the development of both memorisation and
overgeneralisation during training, resulting in overgeneralisation profiles. During
training, we monitor the number of exception samples for which a model does
not generate the correct meaning, but instead outputs the meaning that is in line
with the rule instantiated in the rest of the data. At every point in training, we

72 Chapter 4. PCFG SET

define the strength of the overgeneralisation as the percentage of exceptions for
which a model exhibits this behaviour.

Overgeneralisation peak We call the point in training where the overgeneral-
isation is highest the overgeneralisation peak. In Table 4.1, we show the average
height of this overgeneralisation peak for all three architectures, using an exception
percentage of 0.1%. This quantity equals the accuracy of the model predictions
on the input sequences whose outputs have been replaced by exceptions, but
measured on the original targets that follow from the interpretation functions of
PCFG SET. The numbers in Table 4.1 illustrate that all models show a rather
high degree of overgeneralisation. At some point during the learning process, the
Transformer applies the rule to 88% of the exceptions and the LSTMS2S and
ConvS2S to 68% and 79% respectively.

Overgeneralisation profile More interesting than the height of the peak, is
the profile that different architectures show during learning. In Figure 4.11, we
plot this profile for 4 different exception percentages. The lower areas (in red),
indicate the overgeneralisation strength, whereas the memorisation strength –
the accuracy of a model on the adapted outputs, which can only be learned by
memorisation – is indicated in the upper part of the plots, in blue. The grey
area in between indicates the percentage of exception examples for which a model
outputs neither the correct answer, nor the rule-based answer.

Exception percentage The profiles show that, for all architectures, the degree
of overgeneralisation strongly depends on the number of exceptions present in the
data. All architectures show overgeneralisation behaviour for exception percentages
lower than 0.5% (first three rows), but hardly any overgeneralisation is observed
when 0.5% of a function’s occurrence is an exception (bottom row). When the
percentage of exceptions becomes too low, on the other hand, all architectures have
difficulties memorising them at all: when the exception percentage is 0.01% of the
overall function occurrence, only the convolution-based architecture can memorise
the correct answers to some extent (middle column, top row). LSTMS2S and
Transformer keep predicting the rule-based output for the sequences containing
exceptions, even after convergence.

Learning an exception The LSTM-based models, in general, appear to find it
difficult to accommodate both rules and exceptions at the same time. The Trans-
former and convolution-based model overgeneralise at the beginning of training,
but then, once enough evidence for the exception is accumulated, gradually change
to predicting the correct output for the exception sequences. This behaviour is
most strongly present for ConvS2S, as evidenced by the thinness of the grey stripe
separating the red and the blue area during training. For the LSTM-based models,

4.4. Experiments and results 73

% LSTMS2S ConvS2S Transformer

0.01

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

0.05

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

memorisation

0.1

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

overgeneralisation overgeneralisation

memorisation

overgeneralisation

memorisation

0.5

0 5 10 15 20 25
epoch

0.00

0.25

0.50

0.75

1.00

ac
cu

ra
cy

memorisation

0 5 10 15 20 25
epoch

memorisation

0 5 10 15 20 25
epoch

memorisation

Figure 4.11: Overgeneralisation profiles over time for LSTMS2S, ConvS2S and
Transformer for exception percentages of 0.01%, 0.05%, 0.1% and 0.5% (in in-
creasing order, from top to bottom). The lower area of the plots, in red, indicates
the mean fraction of exceptions (with standard deviation) for which an overgen-
eralised output sequence is predicted (i.e. not the ‘correct’ exception output for
the sequence, but the output that one would construct following the meaning
of the functions as observed in the rest of the data). We denote this area as
‘overgeneralisation’. The upper areas, in blue, indicate the mean fraction of the
exception sequences (with standard deviation) for which the model generates the
true output sequence, which – as it falls outside of the underlying compositional
system – has to be memorised. We call this the ‘memorisation’ area. The grey
area in between corresponds to the cases in which a model does not predict the
correct output, nor the output that would be expected if the rule were applied.

74 Chapter 4. PCFG SET

on the other hand, the decreasing overgeneralisation strength is not matched by
an increasing memorisation strength. After identifying that a certain sequence is
not following the same rule as the rest of the corpus, the LSTM does not predict
the correct meaning, but instead starts generating outputs that match neither
the correct exception output, nor the original target for the sequence. After
convergence, its accuracy on the exception sequences is substantially lower than
the overall corpus accuracy. As the bottom plot (with an exception percentage of
0.5%) indicates that the LSTM-based models do not have problems with learning
exception percentages per se, they appear to struggle with hosting exceptions for
words if little evidence for such anomalous behaviour is present in the training
data.

4.5 Conclusion

In this chapter, I presented a series of tests motivated by theoretical literature
about compositionality. With this work, I aimed to provide more clarity on
what different components researchers may refer to when they talk about the
compositionality of neural networks and allow to test for them independently.
Practically speaking, such tests may help to tease apart the components that
different models can and can not capture, which I illustrated by discussing the
results when the test are applied to three different popular sequence-to-sequence
models. In this discussion, I would like to highlight a few take-away points of
these results.

First, the overall accuracy of all models is relatively high (with the transformer
model coming out on top with an accuracy of over 90%). Nevertheless, the more
detailed picture given by the five compositionality tests, indicate that despite our
careful data design, high scores do still not necessarily imply that the trained
models follow the intended compositional solution. As such, our the results
themselves demonstrate the need for the more extensive set of evaluation criteria
that I aimed to provide with this work. For example, the systematicity test
shows that none of the architectures successfully generalises to pairs of words that
were not observed together during training.12 The average score of the recurrent
architecture, in particular, is only slightly higher than 50% on this data split.
The gap between the overall test score and the systematicity scores suggests that
the poor generalisation to unseen pairs does not stem from systematic capacity
in general, but that the models instead use different segmentations of the input,
applying – for instance – multiple functions at ones, instead of all of the functions in
a sequential manner.13 While larger chunking to ease processing is not necessarily
a bad strategy, it is desirable if models can also maintain a separate representation

12This result that confirms earlier studies such as the ones from Loula et al. (2018) and Lake
and Baroni (2018).

13Later, in Chapter 8, we will find more evidence for this hypothesis.

4.5. Conclusion 75

of the units that make up such chunks, as these units could be useful or needed in
other sequences.

A similar observation can be drawn from the localism test results, that
indicates that models do not truly follow the syntactic tree of the input to
compute meanings. With an additional test in which we monitor the accuracy of
models functions applied to increasingly long string inputs, we find evidence that
models may not learn general-purpose representations of functions, but instead
use different protocols for copy once or copy twice. We see that the accuracy of
LSTMS2S immediately drops to 0 when string inputs are longer than the ones
observed in training; The performance of ConvS2S and Transformer, instead, drops
rapidly but remains above 0 for slightly longer string inputs. These results indicate
that LSTMS2S may indeed not have learned a general-purpose representation for
functions, while the decreasing accuracy of ConvS2S and Transformer could be
related more to performance rather than competence issues.

Aside from the practical, more model-oriented aspect, I hope that – in the future
– these tests might also provide a way to deeper investigations of which aspects
of compositionality are in fact fundamental for natural language (processing).
Despite the fact that they are not informed by knowledge of language or semantic
composition, neural networks have achieved tremendous successes in almost all
natural language processing tasks. While their performance is still far from perfect,
it is not evident that their remaining failures stem from their inability to deal
with compositionality. Instantiating the compositionality tests also in natural
language domains might provide valuable information about the importance of
the aspects they are capturing for natural data.

Part Two

Natural language

In the previous two chapters, I presented two studies that considered how
artificial neural networks process hierarchy and compositionality in controlled
setups. However, studying networks trained on artificial data does not tell us
how much neural networks learn about structure when they are facing natural
language.

Contrary to the artificial languages of the previous two chapters, natural
language is riddled with exceptions, irregularities, idiomatic expressions and
phenomena that are not easily explained with a (simple) rule. This is well
illustrated by the plot shown in Figure 4.12, which shows that the frequency of
productions of a context-free grammar in an annotated corpus follow a distribution
similar to the Zipfian distribution that word frequencies are known to follow: while
the most common rules are very productive, there is a long tail of infrequent rules
that almost never occur.

Figure 4.12: Zipf’s law does not only hold for the relation between rank and
frequency of words, but also for the relation between rank and frequency of context-
free rules. I created this plot at the very beginning of my PhD, using the parsed
CHILDES corpus, section Brown: mother of Adam, Eve and Sara.

In the second part of this dissertation, I leave artificial languages behind and

78

instead focus on what models learn when they are directly trained on naturalistic
data. In particular, I present three different studies that consider how the previ-
ously mentioned neural language models process structure in English. A number
of recent studies have shown that neural networks trained on natural data capture
non-trivial aspects of the grammatical structure. In Chapter 2, I have already
reviewed the main sources of evidence for these claims, which predominantly
builds on the ability of neural language models to correctly process long-distance
subject-verb relationships. The studies that I present in the following three chap-
ters start from that observation, and they aim to uncover the mechanisms they
use to process such relationships.

Like in the previous chapters, also the contribution of these chapters is two-
fold. First, they provide insight in how grammatical structures are processed
by recurrent neural networks. In particular, all studies consider one particular
pre-trained LSTM network, the one provided by Gulordava et al., as a supplement
to the previously described study. Secondly, the studies described contribute on a
more general level, to the development of interpretability techniques for neural
networks, that are applicable also in other domains.

Outline In Chapter 5, I describe a study that uses diagnostic classification.
This study focuses on when and where number information is encoded in the
considered neural network model, investigates how stable this information is over
time and what goes wrong in cases that the network does not emit the right
prediction. In this chapter I also introduce interventions, that can be use to test
if the information found by the diagnostic classifiers is causally related to the
behaviour of the model. In Chapter 6, I describe a study using neuron ablation
that results in a mechanistic level description of how the network keeps track of
long-distance relationships. In Chapter 7, I describe a study that instead uses a
generalised version of Contextual Decomposition (Murdoch et al., 2018) to reveal
how information flows within the network.

Chapter 5

Diagnostic classification and
interventions

In Chapter 3 of this dissertation, I presented a study for which I used diagnostic
classifiers : meta-models trained to predict certain features from the hidden state
of a trained model to infer what kind of information is represented in these
hidden states. I will now re-use and extend this technique to investigate a neural
language model. In first replicate the results of Gulordava et al. (2018) that I
described in Chapter 2, which show that models trained with a language objective
can learn to represent non-trivial grammatical structure. More precisely, they
show that language models can quite accurately model long-distance subject-verb
relationships. In this chapter, I focus on where and when the number information
required to do so is encoded in the network, study how stable the information is
over time and investigate what goes wrong in cases that the network does not
correctly track the subject-verb relationship. Additionally, I will describe how
diagnostic classifiers can be inverted to do interventions on the model’s behaviour,
which can be used to confirm the findings of diagnostic classifier experiments.1

Chapter outline In the next section, I first describe the (pre-trained) model I
used not only for the study described in this chapter but also for the studies of the

1This chapter is based on the work done in a project that I co-supervised together with dr.
Willem Zuidema and which was published at BlackboxNLP 2019:

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem Zuidema.
Under the hood: Using diagnostic classifiers to investigate and improve how language
models track agreement information. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 240–248. ACL,
2018.

Mario Giulianelli, Florian Mohnert and Jack Harding, the three master students in this project,
ran the experiments on which this paper was based, while the project description and experiment
design were provided by me and Willem. This chapter is based on the paper, which was written
primarily by me. The text in this chapter overlaps with the text of this paper.

79

80 Chapter 5. Diagnostic classification and interventions

next two chapters. In Section 5.2, I describe the data used for the study (some
of which will also be re-used in later chapters). I then report the results of the
four main diagnostic experiments in Section 5.3-5.5. In these experiments, I use
diagnostic classifiers on all model components but also consider generalisation of
classifiers across time and components. The last experiment of the study, in which
we introduce interventions, is described in Section 5.6. I conclude in Section 5.7

5.1 Model

The model investigated in both this study and the next two studies is the pre-
trained language model provided by Gulordava et al. (2018).2 This model is an
LSTM-based language model with 2 layers with 650 units and embedding size of
650. The model was trained on a large corpus with Wikipedia data, for 40 epochs
with batches of 128 samples, a dropout rate of 0.2 and a learning rate starting at
20.0, which was halved whenever the validation scores plateaued. It obtained a
perplexity close to state of the art.

5.2 Data

We use two different data sets for our experiments.

5.2.1 Gulordava data

The first data set we used is the data set introduced by Gulordava et al. (2018).
This data set contains 410 sentences that all have at least three tokens between
the subject head and verb. These 410 sentences are split into two subsets, of 41
and 369 sentences, respectively. The 41 sentences are ‘original’ sentences that are
drawn from a corpus, I refer to this subset of the corpus with the name original.
The second corpus, called nonce contains semantically nonsensical sentences, that
are generated from the 41 original sentences by substituting each content word
with a random word with the same part-of-speech tag and morphological features.
The data is constructed in this way to tease apart the influence of semantic and
syntactic features, which as main motivation that grammaticality judgements
should not be influenced by the meaningfulness of a sentence. Every sentence in the
data set is annotated with the correct and incorrect verb forms, the morphological
features of the former, the position of the subject head and of the verb, the number
of agreement attractors, and the type of construction spanning the long-distance
dependency.

2https://dl.fbaipublicfiles.com/colorless-green-rnns/best-models/English/

hidden650_batch128_dropout0.2_lr20.0.pt

5.3. Predicting number from activations 81

The average of estimates of the 10 economists polled puts the dollar around 1.820 marks

root

det

nsubj

case

nmod

case

det

nummod

nmod

acl det

dobj case

nummod

nmod

· ·
a1 a2

k l m

Figure 5.1: A dependency parse of an example sentence with a singular subject
head and main verb (marked in boldface). As the subject average and the verb
put are separated by 7 tokens, the context size (l) of this sentence is 7. Within
this context, there are two intervening plural nouns, estimates (a1) and economists
(a2), which we call agreement attractors.

5.2.2 Wikipedia dependency corpus

Secondly, we extract different subsets from a corpus with number prediction
problems extracted from an annotated Wikipedia corpus by Linzen et al. (2016).3

The large amount of annotated sentences in this data set (ca. 1.5 million) allows us
to retrieve sets of sentences that satisfy specific conditions relevant to subject-verb
agreement; We can extract sentences with specific context sizes, and fixed numbers
of words before the subject and after the verb. We are also able to specify whether
the sentences in the set should have an attractor and – if so – at which index (or
time step) the attractor should appear. Similarly, we can ensure that there is no
other noun between subject and verb that has the same number as the subject.

The specific subset of the universal dependency data set we use varies from
experiment to experiment. I will specify our selection of data for each experiment
in the relevant sections. To clarify which subset of the Wikipedia dependency
corpus is used in an experiment, I use the following notation: WD-Kk-Ll-Mm-Aa.
WD indicates that the data is drawn from the Wikipedia dependency corpus, k
refers to the minimal number of words appearing before the subject, l to the
number of words between the subject and verb (the context size), m to the minimal
number of words after the verb, and a to the position of the attractor relative to
the subject (see Figure 5.1 for an example). I use an asterisk to indicate that no
restrictions are placed on one of the above-mentioned variables; e.g. A* indicates
that there may or may not be an attractor. Finally, I denote data sets with
sentences that have no attractor with A−.

5.3 Predicting number from activations

Gulordava et al. (2018) reported an accuracy of 81.1 for the sentences in their

3https://github.com/TalLinzen/rnn_agreement

82 Chapter 5. Diagnostic classification and interventions

original corpus and an accuracy of 74.1 for their nonce corpus. As a saliency
check, we replicate their results using their data and their code. I report the
results of this replication in Table 5.1.

While overall we obtain similar trends, the accuracy scores of our replication
are slightly lower than those reported by Gulordava et al. (2018). As the results
obtained with our own implementation exactly match those obtained with the
script shared by Gulordava et al. (2018), I currently have no explanation for
the discrepancy between these scores. I do, however, consider the differences
small enough to proceed with the real purpose of this study: using diagnostic
classification to understand how the model under scrutiny represents number
information.

Gulordava et al. Our Accuracy
Original 81.0 78.0
Nonce 74.1 70.7

Table 5.1: Accuracy on both the original and nonce (English) test set Gulordava
et al. (2018). Accuracies represent the percentages of sentences for which the
correct verb form is assigned a higher probability under the LM than the incorrect
form.

To remind the reader: the key idea of diagnostic classification – introduced
earlier in this thesis – is to test whether a model’s intermediate representations
contain information about a particular phenomenon – such as subject-verb agree-
ment – by training another model to recognise the information relevant to the
phenomenon in the internal activations of the model. More precisely, given a data
set of intermediate LSTM representations and a set of labels that describe the
hypothesis to be tested, a meta-model (the diagnostic classifier) can be trained to
predict the correct label from the representations. If the model succeeds in this
task (i.e. if it achieves a performance significantly above chance on test data), this
indicates that the LSTM is in fact computing or keeping track of the hypothesised
information. In the first and simplest diagnostic classifier experiment, we train a
classifier to predict the number of syntactic subject (and thus of the main verb
that agrees with it) of the sentence from the hidden activations of the model.

5.3.1 Diagnostic classifier training

We create a training set containing 1000 sentences that all have 5 words between
subject and verb (i.e. the context size is 5), have at least one word before the
subject and after the verb, and for which no attractor based constraints are placed
on the training set (WD-K1-L5-M1-A∗). We run the pre-trained LM on this
corpus, and for both layers we extract activation data for both the hidden layer
activations ht, the memory cell activations ct and the forget, input and output

5.3. Predicting number from activations 83

gate activations ft, it and ot, respectively. For example, for a single sentence of
length n we obtain 5× 2× n activation vectors, because the model has 2 layers,
there are n time steps, and there are 5 types of activations at each time step t:
ht, ct, ft, it,ot. We then label all activations with the number of the main verb of
the sentence from which it was generated (either ‘singular’ or ‘plural’) and train a
separate diagnostic classifier for each of the 10 components of the LSTM.

5.3.2 Results

We test the trained diagnostic classifiers on two test sets, that differ with respect to
whether the model generated a correct or an incorrect prediction for that sentence
(i.e. a sentence s is in the ‘correct’ set iff the model assigns higher probability
to the correct form of the sentence than to the incorrect form). We label these
test sets the correct and wrong set, based on these predictions. Otherwise, the
sentences in the two sets have similar features, containing both sentences from
WD-K1-L5-M1-A3. While we strive to generate the ‘wrong’ and ‘correct’ test sets
with 100 sentences each, this is not always possible due to data sparsity. However,
we ensure that both test sets have approximately the same size and do contain at
least 50 sentences.

ht ct ft it ot

Layer 0 0.74 / 0.57 0.76 / 0.58 0.69 / 0.55 0.68 / 0.56 0.69 / 0.56
Layer 1 0.90 / 0.62 0.91 / 0.65 0.86 / 0.61 0.86 / 0.60 0.87 / 0.60

Table 5.2: Mean diagnostic classifier accuracies (correct test set/wrong test set)
across time steps, averaged over data sets drawn from different context sizes and
attractor positions (with K=0, M=0, 5≤L≤7 and with a variable number of
attractors at different positions).

In Table 5.2, I print the average diagnostic classifier accuracies. For both the
wrong and the correct test sets, the accuracies are highest at the second layer
across almost all LSTM components, suggesting that the last LSTM layer reaches
the level of abstraction which can best capture long-distance dependencies. The
highest accuracy is achieved by the hidden layer and memory cell of the network,
although number can also be encoded with a relatively high accuracy from the
gates of the network, which is somewhat surprising, given the function of the
gates.

In Figure 5.2, I show the average diagnostic classifier accuracies at different
time steps (for a set with a context size of 5 and a single attractor located three
words after the subject). An interesting first observation concerns the accuracy at
time step 0. Already at this time step, which represents activations from before
the model has seen the subject, the accuracy of the model is above chance level. I
did not further investigate this issue but hypothesise that it originates from the

84 Chapter 5. Diagnostic classification and interventions

Figure 5.2: Accuracies over time (on WD-K1-L5-M1-A3) of 10 diagnostic classifiers
trained and tested on data from different components of the LSTM. The subject
is at time step 1, attractor at time step 4 and the verb at time step 7. Green
lines represent sentences for which the LSTM predicts the correct verb, blue lines
sentences for which the LSTM assigns a higher probability to the incongruent
counterpart.

fact that even words that occur before the subject can give information about the
number of the subject. For instance, the determiner a should be followed by a
singular subject.

Unsurprisingly, the diagnostic classifiers obtain their best accuracy scores at
(or just after) the subject and verb time step. This pattern is consistent across
context sizes, attractor positions, and number of words before the subject and
after the verb, and regardless of whether the LSTM prediction was correct or
incorrect. This result confirms that the model indeed learns to recognise the
number information of subject heads and present tense verbs.

The figure furthermore shows that performance differs between layers and
between components. The diagnostic classifier performance of the second layer
components, moreover, critically differs for ‘correct’ and ‘wrong’ sentences. While
for ‘correct’ instances, the accuracy in all second layer components increases again
after dropping after the subject time step, ‘wrong’ sentences do not show such a
correction.

Aside from showing differences among layers, our results also show differences
across components. For example, classifiers that make predictions based on ct

and ht activations of ‘correct’ sentences are the most stable in terms of accuracy,
in particular at the second layer. Although all LSTM components outperform the
random baseline of 50%, these results imply that the cell state and the hidden
activation are the LSTM components that are most specialised at processing
number information. We further test this claim in Section 5.4.

Another cause of differences across diagnostic classification error rates is the
presence of agreement attractors. Accuracies for the test sets with an attractor

5.4. Representations across time steps 85

are overall lower than those obtained on sentences without an attractor. While
the error rate rises in Figure 5.2 and diverges between ‘correct’ and ‘wrong’ at
the position of the attractor, the same does not happen for sentences without
attractors (not plotted).

5.4 Representations across time steps

The results so-far show us that number information is most easily retrieved from
the internal states of the language model when the noun or verb have just been
presented, but not very well from the internal states at intermediate time steps.
In this section, I focus on these changing representations.

In the previous experiment, we trained diagnostic classifiers on activation
data for all words in the sentence. In contrast, we now train separate diagnostic
classifiers for each time step: each DCt is trained with activation data at time step
t only. We test each DCt on data from all other time steps as well. With a total
of T time steps, this gives us T × T diagnostic classifier accuracies that together
constitute a Temporal Generalization Matrix (King and Dehaene, 2014; Fyshe
et al., 2016). Effectively, we are forcing each diagnostic classifier to specialise on
time step-specific representations of subject-verb agreement information. If this
information is represented similarly across time steps, a classifier trained at the
subject time step should also have a high accuracy when applied to the activations
corresponding with the time step in which the attractor occurs. If, on the other
hand, information is dynamically encoded, no such generality of classifiers is to be
expected.

5.4.1 Diagnostic classifier training

To test the development of the encoding over time, we create a corpus with
sentences that are identical with respect to the position of the subject, attractor
and main verb. We train on sentences with five intervening words between the
subject, containing one attractor three time steps after the subject, and a variable
number of words before the subject and after the verb (WD-K*-L5-M*-A3). After
computing the activations for all sentences, we crop off the words before the
subject and after the verb and split the remaining activations according to time
step. We collect the activations corresponding to all six time steps from subject
to verb, in 6 different bins. For each bin, we train a separate diagnostic classifier.

5.4.2 Results

For testing we create again a correct and a wrong test set, drawing both sets
from WD-K*-L5-M*-A3. Following the same procedure as for the training data,
we split both test sets up into six time steps. In the remainder of this section,

86 Chapter 5. Diagnostic classification and interventions

position 0 thus always refers to the position of the subject, while the attractor
and main verb of the sentence occur at time step 3 and 6, respectively.

(a) Correct test set (b) Wrong test set

Figure 5.3: The temporal generalisation matrices for diagnostic classifiers trained
on memory cell activation at different timesteps, for correct (left) and wrong
(right) sentences. Timestep 0 corresponds to the subject of the sentence, the
attractor and main verb of the sentence occur at timesteps 3 and 6, respectively.
The corpus used for testing is WD-K*-L5-M*-A3.

In Figure 5.3, I plot the Temporal Generalization Matrix for the second layer
memory cell (c1

t) activation data, containing the accuracies of T DC’s evaluated
on T time step data sets each. The left figure shows results for sentences from the
correct test set, the right figure for sentences from the wrong.

A first observation is that accuracies on the diagonals – which correspond
to classifiers that were trained and tested on the same time step – are typically
high for sentences that are processed correctly while being lower for incorrectly
processed sentences. Interestingly, this difference already emerges at the first two
time steps, where no attractor has yet appeared – suggesting that an important
part of the problem with misclassified sentences is the encoding of the relevant
information already when the subject occurs.

Comparing the plots for correctly and incorrectly processed sentences, we
notice that the attractor (time step 3) has a very large effect on the accuracies for
incorrectly classified sentences. For those sentences, the language model’s internal
states contain no information anymore after the attractor is processed: time steps
4 and 5 receive below chance accuracies, whereas for correctly processed sentences
the attractor prompts only a slight dip in accuracy.

Focusing on the correctly processed sentences, an interesting observation that
can be made is the discrepancy between column 0 and 6 (the columns corresponding
to the subject and verb of a sentence) and the rest of the columns. While the first

5.5. Representations across components 87

and last column generalise poorly to different time steps, the classifiers trained
and tested on time steps 1-5 show a different pattern: despite potential effects
from the attractor at time step 3, the accuracy scores do not change substantially
across time steps. This implies that the LSTM represents subject-verb agreement
information in at least two different ways: a short-term ‘surface’ level at and
around the subject time step, and a longer-term ‘deep’ level for successive sequence
processing. This deep level information seems to be represented most generically
at time step 4, the classifier for which has the highest average accuracy across
time steps.

In the next section, I delve deeper into the representations at this time step
and investigate which components of the LSTM are most crucial in representing
this information.

5.5 Representations across components

In this section, I briefly investigate the stability of information across components
of the LSTM. Rather than comparing diagnostic classifiers that are trained on
different time steps, I now compare diagnostic classifiers that are trained on different
components. I focus on time step 4 which, following the previous experiments,
optimally represents ‘deep’ information about subject-verb agreement. For our
experiments, we use the same training set as for the previous experiment, with
sentences with a context size of 5 and a single attractor located three words after
the subject (WD-K*-L5-M*-A3).

Figure 5.4 shows the ‘spatial generalization matrix’, with diagnostic classifiers
trained at time step 4 with data from each components separately. The horizontal
axis represents the components the diagnostic classifier is trained on, the vertical
axis the component used for testing. On the diagonal, we thus see the accuracies
of classifiers trained on the same components as they are tested on. The results
on these diagonal are consistent with the results shown in Figure 5.3. On the
diagonal of the right plot, we see that for sentences for which the model made
an incorrect prediction, there is no component in either layer that consistently
represents the grammatical number of the subject. For correct sentences (shown
in the left plot), the diagonal shows that the second layer components represent
the grammatical subject well, while the first layer components have a much lower
accuracy. The highest accuracies are obtained by the second layer hidden and
memory cell activations (with accuracies of 0.92 and 0.90, respectively). The plot
furthermore shows that the representations in these two components are similar: a
classifier trained on the memory cell activations at time step 4 obtains an accuracy
of 0.85 when tested on the hidden activations; a classifier trained on the hidden
activations an accuracy of 0.89 when trained on the memory cell activations.

88 Chapter 5. Diagnostic classification and interventions

Figure 5.4: The spatial generalization matrices at time step 4. Shown are ac-
curacies of diagnostic classifiers trained on activation data of each component
separately (horizontal), and tested on each component separately (vertical). ‘Cor-
rect’ sentences for which the model made the right prediction are shown on the
left, ‘wrong’ sentences on the right.

5.6 Interventions

In the experiments presented above, we used diagnostic classifiers to investigate
the way the LSTM performs the verb number prediction task. A concern with
diagnostic classifier experiments is the reliability of the information that it picks up.
The fact that a high diagnostic classifier accuracy cannot directly be taken as proof
that the inferred feature is in fact represented and used by the model, because it
is possible that the information was computed post hoc by the diagnostic classifier
and was not actually used by the model itself.

In a recent paper, Hewitt and Liang (2019) propose to use control tasks that
require a diagnostic classifier to predict information of which the modeller knows it
is not represented by the model (for instance because it is random). The accuracy
of the diagnostic classifiers on such a control task provides a baseline for how
difficult it is to extract specific types of labels from activations post hoc and can
thus be used to detect potential false positives in diagnostic classifier experiments.
If the control diagnostic classifier has a high accuracy, this indicates that the
diagnostic classifier experiment itself is unreliable, as the information may have
been inferred by the diagnostic classifier rather than being represented by the
model.

However, also using control tasks should be considered a post hoc method. Also
in this case, a high accuracy on a control task does not irrefutably demonstrate
that the diagnostic classifier inferred information that was not used by the model.
It merely demonstrates that the diagnostic classifier could have inferred the
information if it was not there. In this section, I describe a different approach to
detect the reliability of a diagnostic classifier, which uses diagnostic classifiers to
intervene in the model’s behaviour. If we can purposely change the behaviour of

5.6. Interventions 89

the model by using the diagnostic classifier to change specific information, this
is a clear demonstration that the information learned by the classifier is causally
involved in the behaviour of the model.4

5.6.1 Intervention procedure

We use the same data for our intervention experiment as we used for the experi-
ments described in the previous section: a corpus of sentences with the subject at
time step 0, one attractor 3 time steps after (at time step 3) and the main verb at
time step 6 (WD-K0-L5-M0-A3). We train four diagnostic classifiers to predict
the number of the sentence from the hidden layer activations and memory cell
activations for both layers, respectively.

We then use the trained diagnostic classifiers to actively influence the course
of processing by the LSTM. We start processing sentences from the Gulordava
et al. (2018) corpus, but after processing the subject of a sentence – the point
where we discovered information is stored in a corrupted way for wrong sentences
– we halt the LSTM’s processing, extract the hidden activation and the activation
of the memory cell, and apply the trained diagnostic classifier to predict whether
the main verb in the sentence is singular or plural. We then slightly adapt the
activations of the hidden layer and memory cell activations of the model based
on the error that is defined by the difference between the predicted label and the
correct label for this particular sentence. We compute the gradients of this error
with respect to the activations of the network, and we modify the activations using
the delta-rule (we empirically decided on η = 0.5). In other words, we change the
activations such that the prediction of the diagnostic classifier is slightly closer to
the gold label. After adapting the activations, we continue to process the rest of
the sentence given the adapted activations.

5.6.2 New diagnostic classifier accuracies

In Figure 5.5, I plot the accuracies of diagnostic classifiers trained on different
components of the LSTM when we apply them on activations resulting from
sentences processed with the above-described intervention. Trivially, the interven-
tion increases the accuracy of the diagnostic classifiers for the hidden activation
and memory cell of the network at time step 1, the subject time step. More
interestingly, this effect persists while the processing of the sentence proceeds –
in some cases it grows even stronger – and thus in fact changes how the LSTM
processes the sentence. This effect is not only visible in the components on which
the intervention is done, but also displays in the gate-values, that are not directly

4Arguably, in our case also the difference between diagnostic classifier accuracy for correct
and wrong sentences suggests that the diagnostic classifiers in fact inferred information also
used by the model.

90 Chapter 5. Diagnostic classification and interventions

Figure 5.5: Mean accuracies for each component of the LSTM after an intervention
of ct and ht at the subject timestep 0. An attractor and the agreeing verb occur
at timestep 3 and 6, respectively.

updated but only changed indirectly through the interventions in the memory cell
and hidden activations.

without with
intervention intervention

Original 78.0 85.4
Nonce 70.7 75.6

Table 5.3: Accuracy of the LSTM on the Gulordava et al. (2018) agreement test,
with and without an intervention at the subject time step.

5.6.3 NA-task accuracies

To put our interventions to the test, we now assess the predictions made by
the LSTM as a consequence of the interventions. First, we confirm that the
intervention does not cause strong anomalies in the LSTM, by comparing the
perplexity of a small corpus of sentences processed with interventions at the subject
time step with sentences processed without any interventions. We do not find any
strong differences, confirming that the intervention is minor with respect to the
overall behaviour of the LSTM. Table 5.4 shows an example sentence from this
corpus.

On the number agreement test described by Gulordava et al. (2018) and
conducted earlier in this chapter, however, the intervention does have a strong

5.7. Conclusion 91

An official estimate issued in 2003 suggests suggest
Original -11.05 -8.43 -8.47 -1.24 -3.95 -5.75 -5.70
Intervention -11.05 -8.43 -8.47 -1.27 -3.97 -5.69 -6.44

Table 5.4: Example sentence as processed by the neural language model of
Gulordava et al. (2018), without and with our intervention. Numbers indicate
perplexities per word.

effect, as can be seen in Table 5.3: the accuracy of predicting the correct verb
number increases from 78.1 to 85.4 and from 70.7 to 75.6 for original and nonce
sentences, respectively.

These results provide evidence that diagnostic classifiers, at least in this case,
are able to pick up features that are actually used by the LSTM, rather than relying
on idiosyncrasies in the high dimensional spaces that happen to be correlated with
the predicted labels. Furthermore, they illustrate how diagnostic classifiers can be
used to actively change the course of processing in a recurrent neural network, and
with this opens a path that moves from merely analysing to actively influencing
black box neural models.

5.7 Conclusion

In this chapter, I focused on understanding how an LSTM language model processes
subject-verb congruence, using the number agreement task first presented by
Linzen et al. (2016) in the version made online by Gulordava et al. (2018). We first
replicated their results and then trained diagnostic classifiers to discover where
and how number information is encoded by the LSTM. I showed that number
information is encoded dynamically over time, rather than remaining constant.

Using a cognitive neuroscience-inspired method, we then trained different
diagnostic classifiers for different time steps, resulting in a Temporal Generalisation
Matrix, which provides more information about changing representations over
time. I found that while number information is stored in very different ways
at the beginning and end of a sentence, in between a relatively stable ‘deep’
representation is maintained. Additionally, we find that for sentences in which the
LSTM prefers an incongruent verb over congruent one, the information appears
to be stored wrongly already at the beginning of the sentence, far before the verb
or any attractor is to appear.

Combining this information, I invert the process of diagnostic classification,
using the classifiers to influence rather than merely observe. To do so, we process
sentences with the language model and, at the point where we found information
to be often corrupted, we intervene by (slightly) changing the hidden activations
of the network by backpropagating through a trained DC. After this intervention,
we continue processing the sentence as normal. I show that this small intervention

92 Chapter 5. Diagnostic classification and interventions

has little effect on the overall course of the LSTM, but a very large effect on the
verb prediction at the end: the percentage of sentences for which the model prefers
the congruent over the incongruent verb rises from 78.1% to 85.4%.

With these results, I show not only that diagnostic classifiers also in this case
offer a detailed understanding of where and when information is encoded in a
neural model, but also that this information can be used post hoc to change the
course of the processing of such a model. As such this experiment demonstrates
that the information inferred by the diagnostic classifiers was indeed causally
linked to the behaviour of the model.

Chapter 6

Neuron ablation

In the previous chapter, I described a diagnostic classification study in which
we investigated a pre-trained language model’s ability to capture long-distance
subject-verb relationships. These studies uncovered several interesting aspects
concerning when and in which components the model stores information required
to processes such relationships, but they did not tell us how the model processes
them. In this chapter, using the same pre-trained language model, I follow up on
this question, focusing on the actual mechanisms used by the model.1 I describe a
controlled data set and several ablation studies that we used to pinpoint important
units or clusters of units in the model, aided by further diagnostic classifier
experiments.2

Chapter outline Following the structure of the previous chapters, I first de-
scribe the data we used for the study described in this chapter (Section 6.1).

1The main results presented in this chapter were confirmed also for different runs and
hyper-parameters. I will not further discuss those results.

2The work described in this chapter is part of a collaborative project with Facebook AI
Research and Neurospin in Paris, to which several researchers contributed. I was one of these
researchers, but to avoid giving the impression that the ideas expressed should all be attributed
solely to me, I decided to report about this work primarily in the third person. Part of this
project was published at NAACL 2019:

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas Dehaene,
and Marco Baroni. The emergence of number and syntax units in LSTM language models.
In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019

It was presented there by Yair Lakretz. I took part in the weekly meetings in which we set the
course for this paper, conducted several experiments and contributed to the write-up; Many of
the analyses presented in this paper were done by Yair Lakretz. In this chapter, I report some
results presented in this paper and a few additional experiments. The figures and plots in this
chapter are (re)generated by me, sometimes I repeated them for different data sets than we used
for the published article. The text in this chapter is written by me.

93

94 Chapter 6. Neuron ablation

I then report the results of the model when tested on this data (Section 6.2).
In Section 6.3 to 6.5, I discuss the main results of the ablation and diagnostic
classification studies. I conclude in Section 6.6.

6.1 Data

Like the previous study I described, also the study described in this chapter
makes use of a number of different data sets that are specifically designed to test
particular properties of the model.

6.1.1 Linzen data set

One of the data sets used is the Linzen et al. (2016) data set, in the version that
was made available by Gulordava et al. (2018). This data set contains naturalistic,
corpus-derived number agreement problems, extracted from a large corpus with
Wikipedia data.

6.1.2 Synthetic data sets

In addition to this, Lakretz et al. (2019) use a series of synthetic data sets that
contain number agreement problems involving different syntactic constructions.
The sentences in these data sets differ with respect to the linear distance between
subject and verb, the syntactic distance between subject and verb and the type of
sentential material that is separating them. In particular, Lakretz et al. construct
seven different syntactic templates:

Simple The N V ... The boy greets ...
Adv The N adv V ... The boy probably greets ...
2Adv The N adv1 adv2 V... The boy most probably greets...
CoAdv The N adv and adv V The boy openly and nicely greets ...
NamePP The N prep name V ... The boy near Pat greets ...
NounPP The N prep the N V ... The boy near the car greets ...
NounPPAdv The N prep the N adv V ... The boy near the car kindly greets...

Conditions For all of these templates, Lakretz et al. generate 600 sentences by
randomly sampling the object/subject nouns, verbs, adverbs, prepositions, proper
nouns and position nouns from a pool of options (I report the word lists for every
word type in Table 6.1). They ensured that no semantic anomalies arose as a
consequence of the random sampling. E.g. sentences like “The athlete under the
dog nicely confuses” are never sampled.

For each sentence, the data set contains several both a plural and a singular
version (the examples given above are all singular examples). For the sentences
that contain intervening nouns (the NounPP and NounPPAdv templates), also

6.2. Task performance 95

Subject/object nouns athlete, aunt, boy, carpenter, doctor, farmer, father,

friend, girl, guy, kid, lawyer, man, mother, poet, singer,

teacher, uncle, victim, woman

Proper nouns Barbara, Bill, Bob, Jim, John, Linda, Mary, Mike, Pat, Sue

Position nouns bike, car, cat, chair, desk, dog, table, tree, truck, window

Verbs admire, approve, avoid, confuse, criticise, discourage,

encourage, engage, greet, inspire, know, observe

remember, stimulate, understand

Adverbs carefully, certainly, definitely, deliberately, gently,

knowingly, openly, overtly, probably

Adverbs 2 indeed, most, now, quite

Prepositions above, behind, besides, near, under

Table 6.1: Word lists that we sampled sentences from. Final sampled sentences
can be found at online.

the number of the intervening nouns is systematically varied, resulting in two
congruent and two incongruent versions of the sentence. For instance, for the
nounPP template, the previously mentioned sentence would be a congruent SS
sentence. All conditions for this sentence are:

SS congruent The boy near the car greets ...
PP congruent The boys near the cars greet ...
SP incongruent The boy near the cars greets ...
PS incongruent The boys near the car greet ...

Data sets To generate the data sets for all templates, Lakretz et al. (2019)
sample 600 sentences for every condition. For templates that have only one
common noun (Simple, Adv, 2Adv, CoAdv and NamePP), there are only two
conditions (S and P), those data sets thus have 1200 samples. For templates that
contain two nouns (NounPP, NounPPAdv), there are four conditions, of which
two congruent (SS and SP) and two incongruent (SP and PS). Those data sets
thus consist of 2400 sentences. The exact sampled sentences that we used for our
experiments can be found online.3

6.2 Task performance

The carefully crafted synthetic stimuli allow to test the model’s behaviour on
different syntactic templates that pose different challenges to keeping track of
subject-verb relationships. In Table 6.2, I report the model’s accuracy on all

3https://github.com/FAIRNS/Number_and_syntax_units_in_LSTM_LMs

96 Chapter 6. Neuron ablation

different conditions, as well as the model’s accuracy on the previously described
Linzen data set.4 The conditions in which the subject and verb are singular are
depicted in green.

NA task Condition
Simple S 100
Simple P 100
Adv S 100
Adv P 99.6
2Adv S 99.9
2Adv P 99.3
CoAdv S 98.7
CoAdv P 99.3
namePP SS 99.3
namePP PS 68.9
nounPP SS 99.2
nounPP PP 99.0
nounPP SP 87.2
nounPP PS 92.0
nounPPAdv SS 99.5
nounPPAdv PP 99.8
nounPPAdv SP 91.2
nounPPAdv PS 99.2
Linzen data 93.9

Table 6.2: Model results on all different NA tasks. The first column indicates the
syntactic construction, the second column the condition. Singular conditions are
coloured green.

Almost all accuracies of the model are high, a promising result for the main
purpose of this study, which is to discover how subject-verb relations are handled
by the model. The results also confirm that some conditions are easier than others.
In particular, the simple condition, in which the subject and verb are directly
adjacent, is easier than the condition in which the subject and verbs are separated
by one or more adverbs. The conditions in which the intervening material contains
names or nouns appear the most difficult. Of those conditions, as expected, the
incongruent conditions (SP/PS) are more difficult than the congruent conditions
(SS/PP).

4The setup is identical to the original setup of Linzen et al. (2016) and the setup also used in
the previous chapter: a sentence is considered correct if the model assigns a higher probability
to the correct verb form than to the incorrect one, and incorrect otherwise. Accuracy expresses
the ratio between sentences for which the model’s prediction was correct and the total number
of sentences.

6.3. Long-distance number units 97

Intriguingly, singular conditions seem more difficult than plural conditions
when the subject and verb are further apart: the accuracy on the SP conditions
is lower than the accuracy on the PS conditions. A possible explanation for this
asymmetry could be that the plural verb form in English is more frequent than
the singular one, as it is identical to also other verb forms like the infinitive and
first and second person singular verbs. Later, in Chapter 7, we will see more
evidence that the model treats singular and plural verbs in a different way.

6.3 Long-distance number units

Lakretz et al. (2019) start by investigating the impact of single units on the
model’s performance. They do so by considering the effect of lesioning or ablating
a unit on the overall model performance on the NA tasks. If the ablation of a
particular unit has a strong impact on this performance, this implies that the
encoding of the relevant information for this task is encoded in a local fashion.
If no particular unit causes a drop in performance, subject-verb relations must
instead be represented in a more distributed way.

6.3.1 Ablation experiment

The model’s units are ablated by setting their activation to zero. As there are
1300 distinct units in the model, this results in 1300 different ablation experiments.
I report the results of these experiments in Table 6.3.

Somewhat surprisingly, the ablation studies point to two units that have a
strong effect on the model performance: unit 776 and 998. Ablating these units,
both units in the second layer of the model, reduces the model’s performance by
more than 10% in various conditions. There are two remarkable observations to
be made about the impact of ablating unit 776 and 998.

First of all, both neurons seem to play an important role in processing long-
distance subject-verb relations, but they are less important for short distance
relationships. They cause a substantial reduction in performance in the more
difficult incongruent conditions, while the model performance on shorter distance
conditions (Simple, Adv, 2Adv) remained intact. Secondly, the effect of the two
units is conditioned on the grammatical number of the subject. Ablating unit
998 causes a performance reduction only when the subject is singular, whereas
776 impacts plural conditions. Following Lakretz et al. (2019), I will in what
follows refer to these two units as the plural and singular units, respectively, or
long-distance units, collectively.

Interestingly, the effect of the plural unit persists over more conditions than the
singular unit. Whereas the plural unit has an impact in congruent ánd incongruent
conditions, the singular unit only impacts the incongruent cases (the CoAdv forms
a surprising exception). Furthermore, ablating the plural unit has a substantial

98 Chapter 6. Neuron ablation

NA task Condition Full Model
Ablated
776 988

Simple S 100 - -
Adv S 100 - -
2Adv S 99.9 - -
CoAdv S 98.7 - 82
namePP SS 99.3 - -
nounPP SS 99.2 - -
nounPP SP 87.2 - 54.2
nounPPAdv SS 99.5 - -
nounPPAdv SP 91.2 - 54.0
Simple P 100 - -
Adv P 99.6 - -
2Adv P 99.3 - -
CoAdv P 99.3 79.2 -
namePP PS 68.9 39.9 -
nounPP PS 92.0 48.0 -
nounPP PP 99.0 78.3 -
nounPPAdv PS 99.2 63.7 -
nounPPAdv PP 99.8 - -
Linzen 75.3 93.9 -

Table 6.3: Results of the Lakretz et al. (2019) ablation study. The first two columns
indicate the NA task and condition, the second column the full model accuracy
and the last two columns the accuracy when unit 776 and 988, respectively, are
ablated. Dashes indicate performance reductions less than 10%.

6.3. Long-distance number units 99

impact on the model’s accuracy on the more diverse Linzen stimuli, but ablating
the singular unit does not. In the next chapter of this dissertation, we will see
that this asymmetry may be caused by a default reasoning effect in the model.

Overall, these results suggest a highly local encoding scheme of grammatical
number when processing long-distance dependencies, whereas shorter distance
dependencies and syntactic structure are likely to be represented in a more
distributed fashion.

6.3.2 Singular and plural unit dynamics

Lakretz et al. (2019) plot the cell behaviour for the long-distance units for the
nounPP task, the simplest NA-task with a long-distance dependency and an
intervening noun. I regenerated this plot (shown in Figure 6.1), following the
colour scheme I used before: green for singular, black for plural subjects.

Recap of LSTM dynamics

Both units show an exemplary picture for keeping track of number throughout
the long-distance dependency. How they do so, is best understood considering the
LSTM memory cell update and output rules:

c̃t = tanh(Wxt + V ht−1 + b) (6.1)

ct = it ◦ c̃t + ft ◦ ct−1 (6.2)

ht = ot ◦ tanh(ct), (6.3)

As explained in Chapter 2 of this dissertation, the information flow throughout
an LSTM model is modulated by three gates, whose values are computed by
the model itself. At every time step, an LSTM model computes a candidate
memory cell activation c̃, which is conditioned on the previous hidden state and
the current input (Equation 6.1). The next memory cell value is a weighted sum
of this candidate activation and the previous memory cell activation, where the
input gate control how much of the candidate activation contributes, and the
forget gate controls how much the previous memory cell activation contributes5

(Equation 6.2). The third gate, which is called the output gate, determines how
much of the memory cell passes on to the hidden state of the model, which is
directly connected with the output layer.

Ideal solution

Considering the described LSTM dynamics, an individual cell could represent
number through a long-distance relationship as follows:

5Somewhat confusingly, when the forget gate takes its maximal value of 1, this means that
nothing is forgotten.

100 Chapter 6. Neuron ablation

(a) Singular unit 988 (b) Plural unit 776

Figure 6.1: The average activation values of different components of both long-
distance units throughout the processing of NounPP sentences.

1. First, it encodes the number of the subject in the candidate memory cell
activation c̃ at the subject time step;

2. This information then needs to be transported to the memory cell ct of the
network, which it does by:

a. Opening the input gate (it = 1), which lets this information pass from
c̃ through to the memory cell ct of the unit.

b. Closing the forget gate (ft = 0), which clears the previous content of
the memory cell.

3. In between the subject and the verb, the model closes off the cell to any input
information (it = 0), and it only retains the information that was stored at
the subject time step by completely opening the forget gate (ft = 1);

4. One step before the verb arrives, the output gate of the cell should be opened
to let the number information flow to the hidden state of the cell, where it
can directly impact the model’s prediction.

Behaviour of the long-distance units

As can be seen in Figure 6.1a and 6.1b, both the singular and plural unit almost
perfectly follow the described solution:

1. In the top row of Figure 6.1, we see that the cell activations c̃t of both
unit 988 and unit 766 respond when the subject comes in. This response is
different for singular and plural subjects, at that time step, c̃t thus encodes
whether the just observed subject was singular (black lines) or plural (blue
lines).

6.3. Long-distance number units 101

2. In the second and third row, we see how the units use their gates to copy
this just stored information to the memory cell ct:

a. In row two, we see that the input gate it of the singular unit 988 opens
when the subject is singular, thus letting this information pass through
to the memory cell ct. The input gate of the plural unit 776 behaves in
opposite way: it opens for plural subjects but stays closed for singular
subjects.

b. In row three, we see that the forget gate of both units is closed, thus
clearing the cell from previous information (ft = 0).

3. The number of the subject is then encoded in the cell activation ct of the
units. In subsequent steps, the forget gate ft opens and stays open while the
input gate it closes and stays closed, which retains the number information
in the memory cell ct (This can be seen in column four). An interesting
deviation from the ideal solution occurs at the time after the subject, where
the input gate activation drops but is not exactly zero. Lakretz et al. (2019)
propose the speculative explanation that this may be useful to the processing
of compound nouns, the number of which is dependent on the second noun.

4. The output gate, as predicted, takes the maximum value right before the
verb needs to be predicted (fifth row). By doing so, it lets out the number
information about the subject, which can be used by the model for the
prediction of the verb in the next time step.

6.3.3 Correctly vs incorrectly processed sentences

Given the importance of the long-distance units for keeping track of number
information throughout long-distance dependencies, one might expect a difference
in the unit’s behaviour depending on whether the model’s prediction for the
NA-task was correct or wrong. To test this hypothesis, I regenerated the plots
we presented in the paper, but I split the data set based on whether the model’s
preferred the correct verb form at the end of the sentence or not (akin to the
correct and wrong data sets of the previous section.

NounPP

In Figure 6.2a and 6.2b, I show the behaviour of the long-distance units on
NounPP sentences correctly and incorrectly processed by the model. Somewhat
surprisingly, the behaviour of the units is virtually identical across these two
groups and seemingly unrelated to whether the model made a correct or incorrect
prediction afterwards. The LR units thus reliably encode the correct grammatical
number, but this does not always result in a correct prediction.

In the previous section, we already saw that ablating the long-distance units
does not impact the model’s accuracy for short-distance condition. There must

102 Chapter 6. Neuron ablation

(a) Singular unit 988, NounPP (b) Plural unit 776, NounPP

(c) Singular unit 988, WD-K1-L5-M0-A* (d) Plural unit 776, WD-K1-L5-M0-A*

Figure 6.2: The average activation values of different components of the plural
and singular unit throughout processing different data sets, split based on whether
the model prediction was correct or wrong. The top two plots (a) and (b), show
the units’ behaviour on the NounPP data set, the lower plots (c) and (d) instead
consider the corpus with the less controlled Wikipedia stimuli used in the previous
chapter.

thus be a second, more distributed mechanism responsible for storing number
information in those cases. Furthermore, while ablating the long-distance units
reduces the model’s performance on the NA-tasks, the performance does not drop
to chance level in all cases. This suggests that long-distance number information
may also be represented elsewhere in the model, in a more distributed way. A
potential hypothesis for incorrect predictions is that conflicting information stored

6.4. Short-distance number units 103

by either one of these representations is competing with the information stored in
the long-distance units.

Wikipedia data

For the Wikipidea-based data set that was used in the previous chapter, which
contains more mixed stimuli, there is a slightly larger difference between correct
and wrong sentences (see Figure 6.2c and 6.2d). For both the singular and plural
unit, the hidden layer activations at the time step before the verb occurs deviate
quite substantially, the main source of which seem to be the forget and output
gate. This finding is consistent with the previous chapter, in which we also found
a strong difference between correctly and incorrectly processed sentences.

It seems, thus, that there are at least two potential causes for mistakes on
long-distance subject-verb relationships. In some cases, such as while processing
the mixed Wikipedia stimuli, the long-distance units may not store and release the
subject information entirely correctly, potentially resulting in a wrong prediction.
In other cases, such as or the controlled NounPP stimuli, the long-distance units
do correctly process number information. In such cases, mistakes thus stem from
the model’s inability to correctly propagate this information to its output layer,
likely because it incorrectly deals with conflicting information stored elsewhere.
In the next section, I consider again several diagnostic classification experiments
to locate more distributed representations of number information that could not
be found with the previously described ablation studies.

6.4 Short-distance number units

Ablation studies are an effective tool to find units that on their own have a strong
impact on the behaviour of the network. They are less suitable to find units that
are part of a cluster that represents information in a more distributed fashion.6

To locate such units, Lakretz et al. (2019) resort to a diagnostic classification
experiment similar to the generalisation through time experiment described in
the previous chapter: they train a linear model to predict the number of the
subject from the memory cell activations at the subject time step and then test
the resulting model on all time steps of the incongruent conditions of the NounPP
task. Rather than using model accuracy, Lakretz et al. (2019) evaluate the model
using Area Under Curve (AUC).

6For the model under consideration, ablating all combinations of two units would result in
8.5·104 different experiments

104 Chapter 6. Neuron ablation

Figure 6.3: AUC for diagnostic classifiers trained on subject time step memory cell
activations of unit 988 and unit 766 (green and black dashed lines, respectively)
and the rest of the model units (black lines). The x-axis represents the time step
that the diagnostic models were tested on.

6.4.1 Short and long-distance number information

Lakretz et al. (2019) train three separate linear models: one for the plural unit,
one for the singular unit and one for the rest of the model (without the singular
and plural unit). A replication of their plot can be found in Figure 6.3.

The experiments confirm that the grammatical number of the subject can
reliably be decoded from the long-distance number units 988 and 776, throughout
the whole dependency. The grammatical number of subject can, at the subject
time step, also be encoded from the rest of the network. When the trained
model is used on activations of the rest of the sentence, however, its accuracy
goes down. At the point where the attractor occurs, it consistently predicts the
opposite number, corresponding to the grammatical number of attractor. This
suggests that the information decoded by the linear model is a more short-distance
representation of number, which is sensitive to the last encountered noun. The fact
that in the ablation experiment no units were found to have a strong impact on
short-distance number relations indicates that the representation of short-distance
number information is represented in a more distributed rather than highly local
fashion.

6.4.2 Ablating short-distance units

Considering the weights of the trained diagnostic classifiers, Lakretz et al. (2019)
find 10 units that seemed to play a role in the encoding of short-distance number
information. Further ablation experiments, in which either both the SR and LR
number units, or only the SR number units were ablated, confirm the role of these

6.5. Syntax units 105

neurons: both experiments result in a significant reduction in task performance
on the easier NA tasks, while random equi-sized ablations do not.

6.5 Syntax units

In the previous two sections, we saw two types of number encodings arise: a
syntax sensitive encoding, which is extremely local and persists over long-distance
relationships, and a more distributed encoding, which appears to encode the
number of recently encountered nouns. How the dynamics of these cells are
controlled by the rest of the model, however, remains unclear. In other words,
we do not know which are the syntax-aware units that control the opening and
closing of the gates at the relevant moments. At this point in time, I can not
present a detailed analysis of the syntactic system controlling the network. But,
in the remainder of this chapter, I will discuss a few experiments that are targeted
to finding such syntax units.

6.5.1 Tree-depth prediction

To identify syntax units, we do again a diagnostic classification experiment: we
train a regularised regression model to predict the syntactic tree-depth from the
hidden-state activity of all units.7

Data To formalise the syntactic tree-depth, we follow the procedure of Nelson
et al. (2017). They define the syntactic tree-depth at any point in a sentence as
the number of open syntactic nodes in its syntactic parse tree. We generate a set
of sentences with various unambiguous syntactic structures and annotate them
with their syntactic depth. To decorrelate depth from position, we sample data
points from this set that uniformly cover all position-depth combinations within
positions 7-12 and depths 3-8. The final data set contains 4033 positions (sampled
from 1303 sentences).8

Results To train the diagnostic classifiers, we use a nested 5-fold cross-validation
procedure, in which we add word frequency as a covariate to the model. This
experiment shows that syntactic depth can be decoded from the model (R2 =
0.85±0.009), and that word frequency had a negligible effect.

7For the reader who wonders why we do not run these experiments on the memory cells of
the model as well: we are looking for syntax units that can control the gate values of the SR
and LR number units. These gate values of are conditioned on the hidden state of the model,
not the memory cell.

8Like the previous data sets, also this data set is available at https://github.com/FAIRNS/
Number_and_syntax_units_in_LSTM_LMs

106 Chapter 6. Neuron ablation

Figure 6.4: Behaviour of unit 1150

6.5.2 Behaviour of syntax units

By analysing the weights in the trained diagnostic classifiers, Lakretz et al. (2019)
find a small set of units that have relatively high weights, which they denote as
syntax units.

Ablation To confirm the role of the syntax units, Lakretz et al. (2019) perform
again an ablation experiment. They find that ablating all syntax cells results
in a significant performant reduction of all NA-tasks with an interfering noun,
compared to random equi-sized ablations.

Behaviour Most of the syntax units do not exhibit a behaviour that is easy
to interpret. Unit 1150 forms an exception: the activity of this unit increases
throughout the subject-verb dependency and drops abruptly when the verb arrives.
In Figure 6.4, I plotted the cell state activation of unit 1150 during two sentences
from the corpus used in the previous chapter.

6.6 Conclusion

In this chapter, I described a study that uses neuron ablation and diagnostic
classification to understand the mechanisms that an LSTM language model uses
to process long-distance subject-verb agreement. For this study, we used a new,
controlled data set that contains subject-verb agreement problems where the

6.6. Conclusion 107

subject and verb are separated by different types of sentential material of different
lengths.

Like in the diagnostic classification study presented in the previous chapter,
this study reveals two different mechanisms to encode number information. A
group of short-distance units together encode short distance number information,
used when the subject and verb are close together in the sentence. Long-distance
number information, on the other hand, is encoded in a very extremely local
fashion, by just two single units. Ablating these units causes substantial drops
in the accuracy of the model on sentences that contain long-distance number
agreement problems, for singular and plural subjects, respectively. We show how
these two units carry singular and plural information over time through use of
their gates.

To understand the source of mistakes the model makes on number agreement
problems, I also contrasted the behaviour of the long-distance number units on
sentences for which the model makes correct and incorrect NA-tasks predictions
(similar to the previous chapter). For the mixed Linzen stimuli, we observed a
difference between these two cases, in line with the results of the previous chapter.
For the controlled NounPP data, however, the long-distance units always reliably
encode the number of the grammatical subject, also when the model’s verb form
prediction is incorrect. This suggests that in such cases the model is confused
by other information stored elsewhere in the network, which could either the
short-distance number information stored or a different mechanism that stores
long-distance number information in a more distributed way. Further uncovering
the mechanics of the networks by investigating how the different mechanisms that
store number information ion interact with each other could be an interesting
direction for future work.

Lastly, with a combination of diagnostic classification and unit ablation, we
found a number of syntax units, that appear to be involved in the encoding the
grammatical structure of sentences. One of these units have high connection
weights with the number units; one of them appears to encode the main subject-
verb dependency, across various syntactic constructions. There are still many
open questions concerning the role of these syntax units. How exactly do they
monitor syntactic depth, and what does that have to do with the interaction
between the short and long-distance units? And are the same units used across
different syntactic dependencies? I would gladly further investigate these issues in
the future.

Chapter 7

Generalised contextual decomposition

Both the previous two chapters had a very model-centric focus. They described
studies considering which components of the model are representing what, and
which mechanisms they were using to do so. In this chapter, I take a somewhat
orthogonal approach, which is more data-centric. More precisely, I focus on
how the activations elicited by input words flow through the model and causally
influence its prediction. To track this activation flow (which I will sometimes
refer to as information flow), I use a generalised version of a technique called
contextual decomposition, which I will explain in the next sections. As in the
previous chapter, I use this technique to study how long-distance subject-verb
relationships are processed by an LSTM language model.1

Chapter outline In the next section, I first describe contextual decomposition,
as proposed by Murdoch et al. (2018). In Section 7.2, I describe our generalisation:
generalised contextual decomposition. I provide a precise mathematical description
for those that wish to understand the intricacies of contextual decomposition
and the motivations for its generalisation. To understand the main results of
this chapter, however, a global understanding of what contextual decomposition
aims to achieve is sufficient. The mathematical details can thus safely be skipped.

1The work described in this chapter is part of the master thesis project of Jaap Jumelet. It
was written up as a paper of which I am the last author; this paper was accepted at CoNLL2019
and presented there by the first author Jaap Jumelet:

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes. Analysing neural language models:
contextual decomposition reveals default reasoning in number and gender assignment.
In Proceedings of the 23rd Conference on Computational Natural Language Learning
(CoNLL), pages 1–11, 2019

The idea to use contextual decomposition for language models came from Jaap Jumelet. We
together designed the experiments, with almost daily contact concerning which questions to
ask, which data to look at and which experiments to run next. Most of the text in this chapter
is non-overlapping with the text of the paper, but incidentally I have copied paragraphs or
sentences of the paper that were written by me personally.

109

110 Chapter 7. Generalised contextual decomposition

Section 7.3 contains a brief description of the model and data we use for our
experiments; in Section 7.4 and Section 7.5, I report our results. I conclude in
Section 7.6.

7.1 Contextual Decomposition

Contextual Decomposition (CD) is an interpretability method proposed by Mur-
doch et al. (2018). The aim of this method is to track the causal contributions of
individual tokens or phrases to the final prediction of a model, without modifying
the underlying architecture or using an additional meta-model such as a diagnostic
classifier.

To track the contribution of an input token, Murdoch et al. partition all
states and gate values of a model into two parts: a relevant part, which contains
information stemming from the considered input token, and an irrelevant part,
which contains information coming from other tokens.2 For brevity, Murdoch et al.
refer to the relevant part of the partition with the letter β and to the irrelevant
part with the letter γ, a convention which I follow in the remainder of this chapter.

7.1.1 Separating relevant and irrelevant parts

CD defines how the relevant and irrelevant parts of the hidden states of a model –
containing contributions from inside and outside the considered token, respectively
– are propagated forward with each forward pass of the model. It does so by
computing how the activations corresponding to these parts are transformed
through the mathematical equations that define the underlying model.

For some cases, this forward propagation is defined almost trivially, for instance
if this operation is a linear sum. If a state z is defined as a weighted sum of
two parts a and b – thus z = w1a + w2b – the contributions of a and b are
straightforwardly defined as w1a and w2b, respectively.3 For other operations,
such as multiplications and non-linear activation functions, it is less clear which
part of the output should be attributed to which input. An LSTM model, the
equations of which I repeat below for convenience, contains many of such ‘difficult’

2In this chapter, I only consider the case in which the contribution of a single input token is
computed, however, the method of Murdoch et al. can be straightforwardly extended to consider
multiple, potentially non-consecutive input tokens.

3Or, in relative terms: w1a
z and w2b

z .

7.1. Contextual Decomposition 111

operations:

ft = σ(Wfxt + Vfht−1 + bf) (7.1)

it = σ(Wixt + Viht−1 + bi) (7.2)

ot = σ(Woxt + Voht−1 + bo) (7.3)

c̃t = tanh(Wc̃xt + Vc̃ht−1 + bc̃) (7.4)

ct = ft � ct−1 + it � c̃t (7.5)

ht = ot � tanh(ct) (7.6)

zt = Woht + bd (7.7)

pt = SoftMax(zt) (7.8)

In particular, the model gates (Equation 7.1-7.3) and candidate activations
(Equation 7.4) are wrapped by non-linear activation functions, and the model’s
memory cell and hidden state (Equation 7.5 and 7.6, respectively) are a result of
multiplications between multiple components that are themselves also partitioned
in relevant and irrelevant parts.

I now describe how Murdoch et al. (2018) define the partitioning into β and
γ of each of the network components described in the equations above, given
the partitioning of the components that they are a function of. I start with the
easiest of these cases: the output logits (Equation 7.7), which are formed by a
simple linear sum, and work my way down to the more difficult cases. Relevant
and irrelevant parts of a partition are always defined with respect to a particular
relevant input token, which I sometimes leave implicit for brevity. I denote the
relevant and irrelevant partitions of a particular model component x at time step t
by βxt and γxt , respectively.

7.1.2 Output logits zt

The output logits zt of the model are computed by taking a weighted sum of
the last hidden layer state ht of the model and the decoder bias or intercept bd
(Equation 7.7). Given the partition of this hidden state into a βht and γht part, the
partitioning of zt into βzt and γzt is thus straightforwardly defined as:

zt = Woht + bd (7.9)

= Woβ
h
t +Woγ

h
t + bd (7.10)

= βzt + γzt + bd (7.11)

where βzt provides the final quantitative score of the contribution of the relevant
token to the logit.

112 Chapter 7. Generalised contextual decomposition

7.1.3 Hidden state ht

The hidden state ht of an LSTM model at time step t is computed by applying
a non-linear activation function to the memory cell state ct and multiplying the
outcome with the output gate ot (Equation 7.6). Rewriting this in terms of βct
and γct gives:

ot � tanh(ct) = ot � tanh(βct + γct) (7.12)

Shapley values

To compute how the two partitions βct and γct of the memory cell contribute
through the tanh function that wraps them, Murdoch et al. (2018) make use of a
concept known from cooperative game theory: Shapley values (Shapley, 1953).
Given a cooperative game, the Shapley values reflect how the total gain of the
game should be distributed over the players of this game. Seeing the tanh in
Equation 7.6 as the game, and two partitions βct and γct as the players to this
game, the Shapley values Sβc

t
and Sγct of βc and γc can thus be seen as their

contributions to the gain of the game, which is given by tanh(βc + γc):

tanh(βct + γct) = Sβc
t

+ Sγct (7.13)

Computing Shapley values

The first step in the computation of the Shapley value of a ‘player’ yi considering
the ‘game’ tanh(y1 + y2 + · · ·+ yn), is computing all possible permutations ΠY of
Y = {y1, y2, · · · , yn} and considering all prefixes of those permutations up until
yi.

E.g. when Y = {y1, y2, y3}, there are six such permutations:

y1y2y3 y2y1y3 y3y1y2

y1y3y2 y2y3y1 y3y2y1

All these six permutations have a prefix that stops at yi. For instance, for y1 those
prefixes are:

{} {y2} {y3}
{} {y2, y3} {y3, y2}

For all these subsets Uy1 , we compute the gain of adding y1 to this subset. For
example, if we consider subset {y3, y2}, this gain is:

G(y1, {y3, y4}) = tanh(y3 + y4 + y1)− tanh(y3 + y4)

7.1. Contextual Decomposition 113

The Shapley value of yi, which I denote with Syi , is the mean of the gains for all
previously defined ordered subsets Πyi :

Syi =
1

|Y |!
∑

Uyi∈Πyi

G(yi, U) (7.14)

Note that from a computational perspective, many of the permutations yield
the same value. It is thus not necessary to compute them all.4

Shapley values of βct

To compute the Shapley values of βct and γct in Equation 7.13, only two subsets
need to be considered, respectively:

Sβc
t

=
1

2

((
tanh(γct + βct)− tanh(γct)

)
+ tanh(βct)

)
(7.15)

Sγct =
1

2

((
tanh(βct + γct)− tanh(βct)

)
+ tanh(γct)

)
(7.16)

The decomposition of ht

Based on this assignment of contributions of the tanh, Murdoch et al. (2018)
define the decomposition of ht into βct and γct as follows:

ht = ot � tanh(ct) (7.17)

= ot � tanh(βct + γct) (7.18)

= ot � (Sβc
t

+ Sγct) (7.19)

= ot � Sβc
t

+ ot � Sγct (7.20)

= βht + γht (7.21)

Note that Murdoch et al. choose to not decompose the output gate, which could
be done following a similar procedure. They report that this decomposition did
not empirically improve results. In our experiments, we reverted that decision
and decomposed also the output gate. Later, in subsection 7.2.2, I expand upon
this decision.

4NB: From a mathematical perspective, Shapley values are most straight-forwardly defined
in terms of prefixes of permutations. Another in terms of permutations way of understanding
Shapley values is to think about the contribution of a player as a weighted average of its
contribution to all possible configurations of players that can be formed with a subset of the
total number of players. To assure that the total of all contributions from the individual
components sums up to the actual total contribution, all possible configurations are multiplied
with a number that related to the size of the configuration, resulting in their weighing factor.
For every configuration, this multiplication number is exactly equal to the number of prefixes
that we defined above.

114 Chapter 7. Generalised contextual decomposition

7.1.4 Memory cell ct

The memory cell of the LSTM model is a sum of two products that both contain
two terms that are partitioned into relevant parts β and irrelevant parts γ, and a
part stemming from the bias terms of the model, which I denote Sb:

ct = ft � ct−1 + it � c̃t (7.22)

= (βft + γft + Sbf)� (βct−1 + γct−1 + Sbc)
+ (βit + γit + Sbi)� (β c̃t + γ c̃t + Sbc̃) (7.23)

Selecting interactions This cross-product (Equation 7.23) expresses ct as a
sum of 18 interactions between the β and γ and Sb terms that are already computed.
Of these interactions, Murdoch et al. (2018) label all products containing β-terms
and bias terms (6 in total) as relevant for the next step; all other interactions end
up in the γct . Thus:

βct = βft β
c
t−1 + βft Sbc + Sbfβct−1 + βitβ

c̃
t + βitSbc̃ + Sbiβ c̃t (7.24)

and

γct = βft γ
c
t−1 + γft β

c
t−1 + γft γ

c
t−1 + γft Sbc + Sbfγct−1 + SbfSbc

+ βitγ
c̃
t + γitβ

c̃
t + γitγ

c̃
t + γitSbc̃ + Sbiγ c̃t + SbiSbc̃

(7.25)

Murdoch et al. (2018) present the distribution of interactions over β and
γ terms as an obvious choice. However, later in this chapter we will see that
which interactions are considered relevant has important implications for the
type of research questions that can be answered with contextual decomposition.
We therefore propose to relax this assumption and propose an alternative, more
general version of contextual decomposition, in which it can be more flexibly
chosen which interactions are considered relevant.

Interaction sets In what follows, for brevity I sometimes collectively refer to
all interactions containing only β terms with the notation β-β; the interactions
between β and bias terms with β-bias; the interactions between the β’s of model
states c and c̃ and the γ terms of the gates with βs-γg and the interactions between
the γ’s of c and c̃ with βg-γs.

7.1.5 Gates ft, ot and it, and candidate activation c̃

The last decomposition left is the decomposition of the gate values. For those,
Murdoch et al. (2018) use again Shapley values. For instance, for the forget gate,

7.1. Contextual Decomposition 115

this gives:

ft = σ(Wfxt + Vfht−1 + bf)

= σ(Wfxt + Vf (β
h
t−1 + γht−1) + bf)

= SWfxt + SVfβh
t−1

+ SVfγht−1
+ Sbf (7.26)

If xt is a relevant input token (for which the contribution is to be computed),
it is put into the β part of the partition and is lumped together with the other β
part before computing its Shapley value. In that case, βft and γft are thus:

βft = SWfxt+Vfβ
h
t−1

(7.27)

γft = SVfγht−1
(7.28)

For any other token, the contribution of xt is instead irrelevant. In that case, βft
contains only one term, and the term containing xt is put in the γ partition:

βft = SVfβh
t−1

(7.29)

γft = SWfxt+Vfγ
h
t−1

(7.30)

The output gate ot and input gate it can be decomposed analogously.

7.1.6 Shapley approximation

Computing the exact Shapley values for a particular input word requires keeping
track of all the components in all β and γ terms separately, before summing
them up to the final β and γ contribution. As the number of such terms grows
exponentially with the length of the sentence, and the computational complexity
of Shapley values grows exponentially with the number of terms, this is not
computationally feasible.

Computing Shapley values of sums Murdoch et al. solve this computational
issue by computing the Shapley value of the sums of relevant and irrelevant
components, respectively, instead of taking the sum of the Shapley values. The
resulting contributions are thus not the sum of all the contributions of relevant or
irrelevant components, but instead reflect the contribution of all these components
considered jointly.

To illustrate this simplification, I invite the reader to reconsider the step
from Equation 7.18 to Equation 7.19. In this step, the contributions of βct
and γtc components are assigned by computing the Shapley value of their sum,
rather than considering the many parts they are made up from (as defined in
Equation 7.24 and 7.25.

116 Chapter 7. Generalised contextual decomposition

Another example concerns the difference between Equation 7.26, and Equa-
tion 7.27 and 7.30: a full decomposition would require first computing the con-
tributions of the four components in Equation 7.26 – requiring to consider 15
configurations in total – and then summing them; Instead Murdoch et al. (2018) ap-
proximate the sum SWfxt +SVfβh

t−1
by first summing the two terms and computing

the Shapley value SWfxt+Vfβ
h
t−1

of their joint contribution (7 configurations).

It is important to note that a consequence of the approximation described
above is that the sum of the contributions of all input tokens does not sum up to
the total logit anymore. I discuss this issue in more detail in Section 7.4.

Intercepts decompositions Another simplification step done by Murdoch et al.
to facilitate the Shapley approximation concerns the number of permutations
they consider for their Shapley computation. As explained before, a full Shapley
computation for a particular element requires considering all possible permutations
of elements and averaging over the gains of adding the element of interest to the
prefixes of these permutations up until the element. To reduce the number of
prefixes for which these values have to be computed, Murdoch et al., use only
permutations that have the intercept term at the first position and exclude all
others. Later in this chapter, in Section 7.2.2, I discuss the impact of this decision.

7.2 Generalised contextual decomposition

Murdoch et al. (2018) empirically show that their setup works well for the analysis
of a model that performs sentiment analysis. With CD, they can reliably identify
the sentiment of different input words and subphrases. However, CD contains
several choices that can have a substantial impact on the resulting conclusions.
These choices concern not only their choice of approximation, but also – more
importantly – which interactions within the model they consider relevant. In this
section, I take a closer look at such choices and propose generalised contextual
decomposition (GCD), which generalises CD to be useful in more scenarios.

The two main differences between GCD and CD are:

1. GCD allows for flexibly choosing which interaction sets are considered
relevant, depending on the exact research question asked with a particular
experiment.

2. GCD differs in some technical aspects from CD, in particular, it uses better
Shapley approximations and decomposes all components of the model,
including the output gate.

In the next sections, I discuss these changes, starting from the implications of
choosing different interaction sets (subsection 7.2.1) and then continuing with a
discussion of the technical ‘fixes’ (subsection 7.2.2).

7.2. Generalised contextual decomposition 117

7.2.1 Choosing interaction sets

As can be seen in Equation 7.24, Murdoch et al.’s relevant interaction set includes
only interactions between β and bias terms (β-β and β-bias). They present this
division of interactions between relevant and irrelevant as an obvious choice,
but I argue that, depending on the question that a researcher seeks to answer,
some of the disregarded interactions may in fact be important. Consider, for
instance, the verb prediction in the number agreement tasks that I considered in
the previous two chapters. While the verb form depends only on the subject, when
this information should surface depends on the material in between. In Murdoch
et al.’s setup, this information is disregarded with the irrelevant considered β-γ
interactions.

To address this isue, in GCD we allow a more flexible assignment of relevant
and irrelevant that can thus be varied from experiment to experiment. In our own
experiments, we consider three ways of defining these interaction sets, which I will
explain below.

Our default interaction set IN

The interaction set IN is designed to solve exactly the problem mentioned before:
the contribution of a particular input token does not only depend on the token
itself, but also on its interactions with other input tokens. This becomes even more
concrete considering the long-distance number units described in the previous
chapter. These number units reliably store information about the subject number
in long-distance dependencies, but their gating behaviour is primarily controlled
by different units: the syntax units. While the initial activation of this syntax
unit may still be attributed to the subject, its decrease of activation when the
subject information should surface (see Figure 6.4) depends on the interactions
with intervening sentential material. If these interactions are disregarded, as in
the setup of Murdoch et al., the opening of the output gates of the number units
will be considered irrelevant, and the number information stored in the LR units
will thus also be put in the irrelevant partition of the hidden layer activations.
While we know that the long-distance number units are crucial for processing the
long-distance relationships, their contribution would thus not be counted if al β-γ
are considered irrelevant.

In our default IN interaction set, we therefore include the interactions between
γ parts of the gate with the β parts of the (candidate) memory cell activations
(γft β

c
t−1 and γitβ

c̃
t−1, collectively referred to as βs-γg). In this interaction set we

furthermore follow the addition of the CD authors in a follow-up paper (Singh
et al., 2019), to consider also the interactions between the bias terms at the time
step where the input word is the word for which the information flow is computed.

118 Chapter 7. Generalised contextual decomposition

Intercept interaction sets Intercept* and ¬Intercept
Flexibly assigning interaction sets allows us to also easily test the impact of the
bias terms of the network (the intercepts of the gates and candidate activation
equations). We devise two interaction sets to study their influence on the model
prediction.

¬Intercept In the first interaction set, we leave out all interactions with the
intercepts of the network. We call this interaction set ¬Intercept. In Equa-
tion 7.24, this means excluding both βft Sbc and Sbiβ c̃t (b-b), which will be put in
the γ part of the ct partition.

Intercept* We also consider an interaction set that includes only intercept
interactions. For this interaction set, the initial model state is put into the β
partition, xt is always put in the irrelevant γ partitions. The interaction set is
otherwise identical to IN.

7.2.2 Technical fixes

In the previous section, in which I explained CD, I pointed out several simpli-
fications and approximations implemented by Murdoch et al. to simplify the
computational complexity of CD. Some of these simplifications, I argue, may have
an undesirable impact in the language modelling scenario that we consider here;
we therefore decided to revert them. Below I list the two main ‘technical fixes’ of
CD that we did to arrive at GCD.

Subsets considered in Shapley approximation

The first technical fix considers the approximation of the Shapley values of the
gate contributions. To reduce the complexity of this approximation, Murdoch et al.
restrict the number of subsets that they average over to compute the Shapley
values that define the gate partitioning. In particular, they consider only (ordered)
subsets in which the bias is the first term. In their article, they report that
they find improvements with this configuration. However, this protocol magnifies
the contribution of the bias term (see Figure 7.1 for a worked-out example that
illustrates this). As the role of the bias term is one of the important points of
focus in our experiments, we therefore decide to remove this simplification, and,
with a slight loss of computational efficiency, consider all possible configurations
instead.

The decomposition of the output gate

Murdoch et al. did not decompose the output gates of the model, they report that
they empirically observed that decomposing this gate did not lead to improved

7.2. Generalised contextual decomposition 119

Shapley values, full vs bias-first decomposition

In this example, I consider the computation of the contributions of β, γ and the
bias term b to a gate value, described by:

g = tanh(β + γ + b)

Full decomposition
The Shapley value of β, γ and b is com-
puted by, for all possible orderings of
terms, considering their subset up un-
til that component, and then comput-
ing the gain of adding this component.
For instance, for the bias term b:

Sb = 1/6
(
tanh(β + γ + b)− tanh(β + γ)

+ tanh(γ + β + b)− tanh(γ + β)

+ tanh(γ + b)− tanh(γ)

+ tanh(β + b)− tanh(β)

+ tanh(b)

+ tanh(b)
)

Similarly, the contribution for β is:

Sβ = 1/6
(
tanh(b+ γ + β)− tanh(b+ γ)

+ tanh(γ + b+ β)− tanh(γ + b)

+ tanh(γ + β)− tanh(γ)

+ tanh(b+ β)− tanh(b)

+ tanh(β)

+ tanh(β)
)

Fixed-bias decomposition
When only permutations are con-
sidered of which the bias b is the
first term, the computed contri-
bution of the bias does not depend
anymore on terms containing β and γ:

Sb =
1

2

(
tanh(b) + tanh(b)

)

Also for the contribution of β fewer
terms are taken into account:

Sβ = 1/2
(
tanh(b+ γ + β)− tanh(b+ γ)

+ tanh(b+ β)− tanh(b)
)

As can be seen in the two computations above, when only permutations are taken
into account that have the bias term b at the first position, the contribution of
the bias term defaults to tanh(b). Unless the other terms are 0, the magnitude
of this contribution will be larger than the gain of adding b to the other terms
before computing the tanh.
For instance, consider β = γ = b = 0.4. Using the full Shapley decomposition,
the contributions of those three components will be equal: Sβ = Sγ = Sb = 0.28.
When the fixed-bias decomposition is used, Sb = 0.38 and the remaining gain is
divided by β and γ: Sβ = Sγ = 0.23.

Figure 7.1: Murdoch et al. (2018) do not fully decompose the gate values; instead,
they only consider permutations of the input components that have b at the first
position. Generally, this magnifies the effect of the bias term, which is why in
GCD we decided to revert this decision.

120 Chapter 7. Generalised contextual decomposition

results. I have no empirical evidence against this decision, but for completeness
we decompose all gates in GCD, including the output gate. We decompose the
output gate as described in subsection 7.1.5.

7.3 Model and data

I now present a series of experiments conducted with GCD. Both the model and
data for these experiments are identical to the ones used in the previous chapter.
I provide a brief description for convenience of the reader.

Model We investigate the pre-trained model of Gulordava et al. (2018), which is
a 2-layer LSTM model with 650 units in both the hidden and embedding layers.5

Data For our experiments we use the synthetic data sets introduced in the
previous chapter, focusing in particular on the NounPP data set. To remind the
reader, this data set contains NA problems where the grammatical subject and
main verb of the sentence are separated by a prepositional phrase containing a
noun-phrase. The number of both the subject and the intervening noun are varied
systematically, resulting in four different conditions :

SS congruent The boy near the car knows ...
PP congruent The boys near the cars know ...
SP incongruent The boy near the cars knows ...
PS incongruent The boys near the car know ...

We do not regenerate the sentences in this data set, but use the exact same set
used also in the previous chapter.

7.4 Token contributions

In our first experiment we consider the contributions of all tokens preceding the
verb to the prediction of the verb, using our IN interaction set. This allows us to
trace which tokens in the sentence the model used to come to its prediction.

5Most of the results reported below are also confirmed for the state-of-the-art recurrent
language model provided online by Jozefowicz et al. (2016), I will not report those results in
this chapter.

7.4. Token contributions 121

7.4.1 Decomposition matrix

To visualise our results, we create a decomposition matrix, the rows of which
represent the input tokens; the columns the predicted tokens. Every cell (i,j) of
this matrix thus represents the relative contribution of an input token xi to the
logit of an output yj . Aside from the input tokens, the rows of the decomposition
matrix also contain the contributions of the initial hidden state and the decoder
bias bd. To transform the contribution scores into relative contribution scores,
I normalised all token contributions to a particular output token by the logit zit
assigned to the relevant output token.6

Reading decomposition matrices As the values in the columns of a decom-
position matrix represent contributions to the same output logit, they are directly
comparable. The normalisation allows us to also compare relations within entire
columns. For instance, a column by column comparison might reveal that token A
was more important for the prediction of token Y than token B, whereas token B
was more important for the prediction of token X than token A. It is important
to note that comparisons between different cells in the same row are non-sensible,
because rows have different normalisation factors.

In Figure 7.2, I show two examples of decomposition matrices. From this plot
can be seen that contributions can be both positive and negative. A negative
contribution indicates that a particular input token pushes the logit for the
considered output token down, while a positive input means it makes the logit
larger. In what follows, I highlight a few salient points in the decomposition
matrix, before continuing to discussing decomposition matrices averaged over
many sentences.

Verb form columns For our particular case, we are most interested in the last
two columns of the matrix, that represent the contributions of the input tokens
to the probability mass of the correct and incorrect verb form of the network.
The contribution of the subject to the verb is marked with a black box. For
both sentences, we see that the subject contribution is the highest contribution
in its column for these sentences, indicating that most of the probability mass
in the logit is indeed stemming from the subject. For both sentences, also the
information flowing from the initial model state contributes substantially to the
logit of the singular verb form, almost as much as the subject. Interestingly, the

6As explained in subsection 7.1.6, the sum of all token contributions does not sum up to
the complete logit, because the Shapley values are approximated instead of computed exactly.
Normalisation could also be done by dividing by the sum of the token contributions, instead of by
the total logit, which may sometimes paint a slightly different picture. In this chapter, I decided
to show only pictures that are normalised with the logits, for a more elaborate exploration of
the impact of different normalisations, I refer to the (yet unpublished) master thesis of Jaap
Jumelet.

122 Chapter 7. Generalised contextual decomposition

(a) Decomposition matrix for the sentence
The doctor near the dogs knows

(b) Decomposition matrix for the sentence
The boy near the truck knows

Figure 7.2: Decomposition matrices for two different sentences from the NounPP
corpus. The contribution values are computed with the IN interaction-set, and
the columns are divided by the total logit z of the token in the output layer of
the model. The first and last row represent the contributions of the initial model
state and the decoder bias, respectively.

subject contributes also to the probability mass of the incorrect verb form.

Decoder bias contributions In the last row, we see the contribution of the
decoder bias bd (or intercept). This bias is a fixed term, added to the output layer
of the network (see Equation 7.7); it does not vary across sentences. The value
differences between the values for bd for the tokens know and knows thus stem
solely from the logit value the network assigned to those tokens: for the sentence
in Figure 7.2a, the logit of the token know was smaller than it was for the same
token in the sentence of Figure 7.2b; The contribution of the decoder bias to the
logit in Figure 7.2a is therefore higher than the contribution of the decoder bias
in Figure 7.2b. Analogously, it can be concluded that the logit for the plural verb
form know was higher in Figure 7.2a than in Figure 7.2b.

Comparing values It is important to note that the difference in logit values
between sentences but also between tokens within one sentence means that value
comparisons across columns are not salient without context. For instance, in
Figure 7.2a we see that the contribution of the subject to the logit of the singular
verb form is twice as big as its contribution to the logit of the plural verb form, but
this does not tell us anything about the relative magnitude of this contribution.

7.4. Token contributions 123

If the logit of the plural verb form is much larger than the logit of the singular
verb form, the activation flowing from the subject to the plural verb form may
still be larger than the activation flowing to the singular form, even though it is
relatively speaking smaller. In the rest of the analysis, I therefore stick to within
column comparisons.

7.4.2 Average decomposition matrices

After having explained to the reader the salient points in the decomposition matri-
ces of two single sentences, I would now like to move to discussing decomposition
matrices that are averaged over multiple sentences. In Figure 7.3a and Figure 7.3b,
I show the average of all decomposition matrices for the PS and SP conditions of
the NounPP data set, respectively.

(a) NounPP, PS (b) NounPP, SP

Figure 7.3

Noun contributions In both the SP and PS cases, the subject contribution
to the main verb of the sentence is highly positive (boxed cells). On average,
the subject contribution to the incorrect verb form is negative, something we did
not observe when considering the two single sentences in which the verb was the
frequent verb know. Also in both conditions, the attracting noun contributes to
the probability mass of the incorrect verb form, that has the same number as this
noun.

Default reasoning The plots show also a remarkable difference between singular
and plural sentences. For the plural sentences (left plot), the subject contribution

124 Chapter 7. Generalised contextual decomposition

to the correct verb form is substantially higher than the contributions for all
other components, including the initial hidden state and the decoder bias. For
the singular condition (right plot), the subject also contributes to the generation
of the correct verb form, but the main contributions stem from elements outside
of the subject. The highest contribution to the correct verb form comes from the
initial state of the network; Also the contribution of the determiner is high.

A similar pattern is apparent in the final column of the plot, which repre-
sents the contributions to the logit of the incorrect verb form. While the main
contribution to the plural logit stems primarily from the plural attractor noun,
the logit of the singular verb form instead receives strong contributions from
non-numbered tokens, such as the initial state of the network. These values
suggest that predicting a plural verb requires explicit evidence from a plural noun,
whereas predicting a singular verb form could be seen as the default behaviour
of the model. Interestingly, the decoder bias of the model appears to encode a
different default: the relative contribution of the decoder to singular verbs is much
lower than the contribution to plural verbs, which is consistent with the earlier
drawn conclusions that plural verb forms are more frequent than singular verb
forms.

7.5 Information ablation

In the previous experiment, we focused on the contributions of different input words
to the model’s prediction. Now, I focus directly on how the model’s prediction
is driven by different parts of the input, by doing interaction ablation. In other
words, I consider how the input tokens are causally linked to the output prediction.
To do so, we filter out different information partitions (as specified by GCD) and
study how this affects the model’s accuracy on the NA tasks.

7.5.1 Subject information

In the first experiment, we consider what happens with the prediction of the model
when we filter all information that is not coming from the subject. If the subject
is the primary driver for the prediction of the correct verb form, filtering out other
information should not affect a model’s ability to form the right prediction. On
the contrary: it should help the model, as we remove all potentially confusing
information that might distract the model. If, instead, the prediction of the verb is
not causally linked to the subject, but the model is using a heuristic that requires
information from the rest of the sentence (or its initial state), we expect a decrease
in accuracy.

The results of this experiment, shown in Table 7.1 (column IN), confirm the
conclusion drawn in the previous section. For all plural conditions (in back),
the accuracy goes up. For plural conditions, filtering information is thus helpful,

7.5. Information ablation 125

gcd
Task Condition full IN Intercept∗ ¬Intercept
Simple S 100 (100) 73.3 (91.3) 97.3 (100) 69.7 (86.3)

Simple P 100 (100) 100 (100) 32.7 (7.7) 100 (100)

nounPP SS 99.2 (99.0) 93.0 (99.7) 99.8 (99.8) 72.7 (88.7)

nounPP SP 87.2 (94.3) 90.3 (99.3) 98.8 (99.8) 60.5 (83.5)

nounPP PS 92.0 (83.0) 100 (100) 0.0 (0.0) 100 (100)

nounPP PP 99.0 (94.8) 100 (99.3) 7.0 (0.5) 99.8 (100)

namePP SS 99.3 (99.9) 97.7 (91.3) 99.4 (100) 76.2 (90.9)

namePP PS 68.9 (54.6) 98.3 (98.2) 1.3 (0.0) 99.9 (99.9)

Table 7.1: Accuracies of the model when information flow is selectively pruned.
The full column indicates model accuracies without pruning. IN denotes the
condition in which only information from the subject, using the IN interaction
set, is let through. Intercept∗ indicates accuracies where only the information
of the model intercepts is considered. For ¬Intercept, instead, all intercept
interactions are filtered out. Singular conditions are coloured green. (·) indicates
model accuracies of scores without decoder bias, i.e. Dht vs Dht + bd.

indicating that the prediction of the plural verb is indeed causally linked to the
plural subject of the sentence. For singular verbs, almost all accuracies instead go
down, indicating that the model was using information from outside the subject
to come to the right prediction.

7.5.2 The role of the intercepts

In a second experiment, we focus on the role of the model intercepts (bi, bo, bf and
bc̃, which are likely to play a role in the model’s default behaviour. In particular,
we consider two different setups: one in which we consider only the information
coming from the intercepts (Intercept*) and one where instead all interactions
with the intercepts are filtered out (¬Intercept).7

The results of both experiment, shown in the last two columns of Table 7.1, show
that the previously found default effect of the model is to a strong extent encoded
in the model intercepts. When only information coming from the intercepts and
initial state is considered – all activation flowing from the input embeddings is
put in the γ part of the partitions – the accuracy of the plural conditions drops
in most cases to almost 0, while the singular accuracies stay close to 1. In the
discongruent nounPP condition SP, the model accuracy considering only intercept
information is even higher than the full model accuracy. Conversely, when no
intercept interactions are taken into account, the accuracy of singular conditions

7For a complete description of the interactions included in this set, I refer the reader back to
Subsection 7.2.1.

126 Chapter 7. Generalised contextual decomposition

suffers, while the accuracy of plural conditions increases, or stays the same.

7.5.3 The decoder bias

For all previously described experiments, we computed also the model’s accuracy
without the decoder bias bd, shown between brackets in all columns of Table 7.1.
The results confirm the previous observation that the decoder intercepts pushes
towards plural predictions. Removing the decoder bias generally increases the
accuracy for singular conditions while decreasing the accuracy for plural conditions.
The decrease in accuracy for the plural conditions is less strong in congruent
cases, or when information favouring singular predictions is filtered out (the in

and ¬Intercept columns, suggesting that the plural decoder bias may serve
as compensation for the overall singular bias of the network (or the other way
around).

7.6 Conclusion

In this chapter, I described contextual decomposition (CD), an interpretability
technique that provides a procedure for tracking the impact that activations flowing
from input tokens have on the predictions of a model. I criticised several impactful
choices in this technique and then introduced a more general version – generalised
contextual decomposition (GCD) – that addresses some of the criticisms and
provides a more flexible setup that can be adapted based on the modeller’s
research questions.

I described a series of experiments with GCD concerning subject-verb agreement
in a pre-trained neural language model. With these experiments, I illustrated
how GCD can be used to track the contributions of different input tokens to the
predicted logits of specific output tokens, to study interactions between input
tokens and the model’s intercepts, and to investigate the causal effect of input
tokens and/or model components on the model’s prediction.

With these experiments, we uncovered a default effect in the model: the
prediction of plural verbs is strongly causally linked to the grammatical subject
of the sentence, while singular verb forms do not require explicit evidence from
singular nouns. This default appears to be encoded in the learned initial state
(h0, c0) and the intercept terms bi, bf , bo and bc̃ of the model. Interestingly, the
decoder bias bd of the model encodes a different default. On average, this bias term
is higher for plural than for singular verbs, in line with the frequency difference of
these verb forms.

An important advantage of GCD with respect to ablation or diagnostic classi-
fication is that it can also be used for phenomena where a behavioural setup with
a right and wrong answer can not be easily constructed. For instance, to study
negative polarity items or anaphora resolution. For such cases, it is important

7.6. Conclusion 127

what information a model-based a particular prediction on, rather than what this
prediction is. Consider, for instance, the case in which a model processes the
sentence prefix ‘The man asked his niece if . . . ’. Both he and she are acceptable
continuations for this prefix and comparing their probabilities thus does not pro-
vide information on whether the model based its prediction on the correct referent.
With GCD, this is easily addressed, because it can be computed what are the
contributions of the two nouns to the logits of the tokens he and she.8 This opens
up possibilities a new range of linguistic phenomena that can be investigated, but
it also carves out a role for GCD to study important topics such as gender bias in
models.

8In Jumelet et al. (2019), we presented a study considering anaphora resolution of both
unambiguously and stereotypically gendered nouns, I refer the interested reader to Section 4.2
and Section 6 of this article.

Part Three

Guiding models

It is well known that a finite set of input-output pairs can be described in
many different ways (Angluin and Smith, 1983; Gold et al., 1967). In the space of
all potential solutions, one extreme is to simply memorise all pairs, which does not
offer any means to extrapolate to new inputs. On the other end of the spectrum,
we find solutions that abide by the principle of minimal description length, which
provides much stronger generalisation capacity (Hutter, 2004; Rissanen, 1978).
Recurrent neural networks can in theory represent many different solutions on this
spectrum. In the previous chapters, we learned that such networks, when trained
with back-propagation and gradient descent, can capture interesting aspects of
structure and hierarchy. But, at the same time, they are not yet at the point
of being plausible approximators of human behaviour. In particular, when it
comes to explicit compositional rule learning, models often miss the intended
compositional solution and model the training data by using a series of heuristics
or shortcuts instead.

In the third and last part of this dissertation, I investigate whether it is possible
to change the types of solutions that models learn by changing their learning
signal. More specifically, I explore the hypothesis that one reason that models
find for humans undesirable solutions to their task is that they segment the input
in a way that is different from the segmentation intended by the modeller. As a
consequence, models may be unable to distinguish salient from non-salient patterns
and end up memorising patterns that may seem reasonable given the training
data, but are not when considering the underlying system. For instance, taking a
linguistic perspective, in the sentence the man with the hat walks in the park, we
say that walks in the park a salient and reusable subsequence, whereas hat walks
in is not, regardless of how often it may have occurred in a corpus.

To test this hypothesis, I investigate what happens when a model is given
explicit information about the ‘correct’ segmentation. Can we guide a model to
exhibit more compositional behaviour without introducing an additional compo-
nent to it that takes care of structure? If so, what is the impact on the way that
its parameter space is organised?

Chapter 8

Attentive Guidance

As a little exercise, imagine teaching a child how to read. I assume that you do
not imagine giving her increasingly long sequences of words and letters (inputs)
and ask her to vocalise them (the target). Instead, you guide her through the
process. You draw her attention by pointing at individual letters, tell her how to
pronounce them. You show her how together letters form a word. In other words,
you inform her about the individual components of the task of reading, and you
tell her how these can be combined.

When we train neural networks, we usually do not provide them this type
of information. Instead, we do give them a large set of input sequences and
ask them to generate the corresponding output sequences. In this chapter, I
first investigate if giving a recurrent model a learning signal that contains more
information about how the input should be segmented might change the type
of solutions it finds. To give this signal, I will use a model with an attention
mechanism (see Section 2.2.4).1 Then, I provide a thorough exploration of the
impact of this changed learning signal on the way that the learned solutions are
implemented by the network, using many of the techniques proposed and discussed
earlier in this dissertation. I investigate how the parameter space is structured,
how individual neurons and gates behave and how distributed the implementation
of the solution is.2

1The first part of this chapter is based on the following paper:

Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia Bruni. Learning
compositionally through attentive guidance. In International Conference on Computa-
tional Linguistics and Intelligent Text Processing (CICLing), 2019c

The study described in this paper was part of the master thesis of Anand Kumar Singh, who I
supervised together with Elia Bruni. Anand Singh provided the initial implementation of the
technique we called attentive guidance. I reimplemented it in a different code base to confirm
the results and run further experiments. The published article was written mostly by mean,
there is a large overlap between the text of this article and the current chapter.

2The second part of this chapter is based on a June project that I, together with Elia Bruni,
ran with 7 master AI students. Elia Bruni and I formulated the experiments, which were

131

132 Chapter 8. Attentive Guidance

Chapter outline Following my previous chapters, I again start with a descrip-
tion of the data set used for this study. In subsequent sections (8.3 and 8.4) I
describe attentive guidance (AG) and the experiments we did to understand its
impact on the behaviour of the model. In Section 8.5, 8.6 and 8.7, I describe a
comparison between the solutions learned by models trained with and without
AG, in terms of the organisation of their parameter space and the function of
(groups) of neurons. I conclude in Section 8.8.

8.1 Data

For the investigation described in this chapter, I consider the lookup table task
introduced by Lǐska et al. (2018), which I already discussed earlier in this dis-
sertation, in Chapter 2. The atomic operations in this task are very simple, but
correctly generalising requires understanding that the inputs are compositional
sequences of such operations, which should be sequentially composed.

Lǐska et al. (2018) showed that vanilla recurrent models rarely correctly infer
this compositional structure, even when they receive explicit information concern-
ing the “intermediate outputs” of the operations. This clear failure provides an
excellent test bed to explore the impact of changing the learning signal..

8.1.1 Task description

As explained in Section 2.3, the lookup-table task consists in computing the
meaning of sequences of lookup tables, which are defined as bijective mappings
from the domain of binary string of length L onto itself. For instance, the lookup
table t1 may be defined as:

t1 00 → 01
t1 01 → 11
t1 10 → 10
t1 11 → 00

A series of such lookup tables is – together with their input – presented to a
neural network model, and the model is then asked to output the outcome of this
computation. For instance, a potential input sequence could be 000 t1 t2; the

conducted and further filled in by the students, whom we met twice a week. The work was
published at the BlackboxNLP workshop held at ACL 2019:

Joris Baan, Jana Leible, Mitja Nikolaus, David Rau, Dennis Ulmer, Tim Baumgärtner,
Dieuwke Hupkes, and Elia Bruni. On the realization of compositionality in neural networks.
In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, pages 127–137, Florence, Italy, 2019. ACL

8.1. Data 133

Figure 8.1: Repetition of Figure 2.1, with an example matching the lookup table
setup.

correct response would involve first looking up 000 t1 and then applying t2 to its
outcome.3 To encourage the model to interpret the individual parts of the inputs,
the model is asked to output also the intermediate steps of the computation.

Because applying the lookup tables themselves requires nothing more than
simple memorisation, the difficulty of the task resides solely in inferring the
compositional structure from the input-output sequences. The task performance
of the network is thus directly linked to the extent to which the solution a network
inferred is compositional, without being conflated by other factors.4 Lǐska et al.
(2018) show that only very rarely a vanilla LSTM model converges to a solution
that generalises to the test set, while the vast majority of trained networks does
not exhibit compositional behaviour.

8.1.2 Data splits

Following Lǐska et al. (2018), we use eight randomly generated 3-bit atomic lookup
tables and the 64 possible length-two compositions of these atomic tables. Some
examples can be found in Figure 8.2. Contrary to Lǐska et al. (2018), we use several
different splits, that vary in terms of how many and which types of sequences are
held out.

3Note that we use polish notation, to facilitate an incremental computation of the outcome.
4At the same time, it also strips away other aspects of compositionality that may be relevant

and interesting. For a more elaborate discussion of this issue, I refer back to Chapter 4.

134 Chapter 8. Attentive Guidance

Input Target AG target

Atomic 000 t1 000 011 0 1

001 t2 001 000 0 1

.
Composed 001 t2 t1 001 000 011 0 1 2

110 t2 t3 110 001 000 0 1 2

.

Figure 8.2: Examples of 3-bit lookup tables and a length-two composition. The
order of presentation follows Polish notation, allowing the encoder to process the
input incrementally rather than having to wait until the very last input symbol.
The AG target is a sequence of indices that represent to which symbols in the
input sequence the decoder should attend.

Heldout inputs The easiest setting is the heldout inputs setting. In this setting,
for each of the 64 compositions in the data set, two inputs are held out. E.g., for
the composition t3 t4, the sequences t3 t4 01 and t3 t4 11 could be in the
test set, while all the others are in the training data. This setting matches the
one presented by Lǐska et al. (2018).

Heldout compositions In the heldout composition condition we hold out com-
positions of tables, rather than random inputs. Of the 64 potential compositions,
we randomly remove eight.

Heldout tables The last condition is the heldout tables condition, in which we
test to what extent models can generalise to compositions with tables that occurred
atomically in the training set (e.g. 000 t7), but never in combination with any
other table. For this condition, we remove al composed sequences containing two
randomly chosen lookup tables (that I will call t7 and t8).

8.2 Model

For the present study, we use an encoder-decoder model (see Section 2.2.1) similar
to the model I used in Chapter 3. Contrary to that model, the model used here has
a sequential decoder; furthermore, it has an attention mechanism (Section 2.2.4).

8.2.1 Architecture

I included a graphical depiction of the model in Figure 8.3. The model first
uses a recurrent layer to encode the input (left upper side of the figure). As
explained in Section 2.2.2, it requires an embedding layer to transform the discrete

8.2. Model 135

one-hot vectors that represent the input words (000, t3 and t1 in the figure) into
continuous representations, which is left implicit in the picture.

The final encoder representation is then used to initialise the decoder part of the
model (top right). At every decoding step, the model computes an attention weight
vector, which indicates which encoder representations are the most relevant for the
current generation step. This weight vector is used to generate a weighted average
of these encoder representations, which is often called a context vector. This
context vector is combined with another vector which represents the embedded
previous output of the decoder and then given as an input to the decoder, which
generates the next output. The first input token to the decoder is always the
start-of-sequence token <SOS>.

◦◦◦ ◦◦◦ ◦◦◦

◦◦◦◦ ◦◦◦◦ ◦◦◦◦

000 t3 t1

Embeddings

Encoder

0.1[0.5 0.4]

0.3[0.4 0.3]

0.1[0.2 0.7]

◦◦◦◦

◦◦◦◦

◦◦◦◦

ct =
∑

i ai,tei

◦◦◦◦ ◦◦◦◦ ◦◦◦◦Decoder

◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦Output

000 101 011

◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦

Figure 8.3: The model used for the lookup table task consists of a recurrent
encoder and decoder and an attention mechanism. The encoder model first
embeds the input words and then creates a series of representations e0, . . . , en for
the input sequence. The decoder, initialised with the final encoder state, then
generates an output sequence, making use of an attention mechanism, with which
it can look back at the encoder representations of every time step. At every time
step, the decoder computes an attention weight vector, indicating which encoder
representations are the most relevant for the current generation step. This weight
vector is used to generate a context vector ct, which is a weighted average of the
encode representations ei. This context vector is combined with the embedded
vector that represents the previous output and given as input to the decoder which
then generates the next output.

8.2.2 Attention mechanism

To compute the attention vector at, the model has an additional set of weights.
These weights, which parametrise a two-layer perceptron are used to compare the
current decoder hidden state with all encoder hidden states, resulting in a score

136 Chapter 8. Attentive Guidance

for every encoder hidden state. The attention vector at is formed by normalising
these weights such that they sum to 1:

ai,t =
MLP (ei, dt)∑

j aj,t
(8.1)

There are several possible methods to then integrate the context vector, con-
structed using the weights described above, with the embedded previous word. In
our experiments, we try both concatenation and multiplication.

8.2.3 Learning

All parameters of the model, including the MLP that computes the attention
vectors, are learned end to end by the model. As a loss function, we use categorical
cross-entropy:

L =
1

T

(
T∑

t=1

N∑

i=1

− yi,t log ŷi,t

)
(8.2)

where yt is the target one-hot vector at time step t and ŷt the softmax distribution
generated by the model at time step t.

8.3 Attentive guidance

The learning signal described in the previous section provides information about the
correct mapping between input and output but does not provide much information
about what the nature of this mapping should be. A model might thus represent
the mapping from inputs to outputs present in the training data in a way that
does not generalise to the test data. For instance, reconsidering the toy world
from Chapter 2 (see Figure 8.1), a model might memorise the composed path
from hotel to conference to park as a whole and may then not be able to go to the
park from the conference site if the latter was reached from the restaurant rather
than the hotel. I now investigate if a model can be helped to robustly learn the
desired solution by guiding its attention component.

Intuitively, we tell the model – during training – which components are to be
considered at which point in time, similar to how we might also guide the attention
of a human learner. Importantly, this signal is only provided during training, at
inference time the model receives no different information than a vanilla model.

8.3.1 Attentive guidance as a loss

Concretely speaking, attentive guidance (AG) is provided to a model by adding an
extra loss term to its objective function during training. This loss term represents

8.3. Attentive guidance 137

◦◦◦ ◦◦◦ ◦◦◦

◦◦◦◦ ◦◦◦◦ ◦◦◦◦

000 t3 t1

Embeddings

Encoder

0.1[0.5 0.4]

0.3[0.4 0.3]

0.1[0.2 0.7]

[1 0 0]

[0 1 0]

[0 0 1]
D(a, â)

◦◦◦◦

◦◦◦◦

◦◦◦◦

ct =
∑

i âi,tei

âi,t = MLP (ei,dt)∑
j
âj,t

a

D(a, â) = −∑i ai log âi

◦◦◦◦ ◦◦◦◦ ◦◦◦◦Decoder

◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦ ◦◦◦◦◦◦◦Output

000 101 011

◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦ ◦◦◦◦

Figure 8.4: At each time step t, the model computes an alignment weight vector ât
based on the current decoder state ht and all encoder states. During training, this
alignment vector is compared with the target alignment vector at, which indicates
which encoder state is relevant at the current computation step. E.g, at the second
computation step, the model should apply the lookup table t3; it should therefore
assign a high weight to the second encoder hidden state representing this lookup
table, while it is not necessary to look at the next lookup table that should be
applied. To teach the model this behaviour, we add a loss term to the training
objective that expresses the cross-entropy between â and the AG target a.

the difference between the model’s computed attention and the target attention
pattern:

LAG =
1

T

(
T∑

t=1

N∑

i=1

− ai,t log âi,t

)
(8.3)

where T is the length of the target output sequence, N is the length of the input
sequence, âi,t is the decoder-computed attention of input token i at time t and ai,t
is its corresponding attention target. The target attention pattern specifies how
the input should be attended in a compositional way. We weigh the original loss
of the model (Equation 8.1) and the AG loss with their corresponding weighting
factors. A schematic of attentive guidance is given in Figure 8.4.5

5The code and data sets are available at: https://github.com/i-machine-think/machine
and https://github.com/i-machine-think/machine-tasks, respectively.

138 Chapter 8. Attentive Guidance

8.4 Experiments

We train several encoder-decoder models with and without attentive guidance (I
refer to them with the names baseline and guided models, respectively). The two
model types are identical from an architectural perspective, but – as described in
the previous section – the guided model has the additional training objective to
minimise the cross-entropy loss between the calculated attention vectors and a
provided target attention vectors in its backward pass.

For both guided and baseline models, we run experiments with different model
sizes and try both GRU and LSTM cells. We find that GRU models generally
perform better for the lookup-table task than LSTM models, for both guided and
baseline models; in the remainder of this chapter, I only report results for GRU
models.

8.4.1 Model parameters

We search through embedding and hidden layer sizes {16, 32, 64 and 128} and {32,
64, 128, 256 and 512}, respectively. We run each configuration 3 times for each
condition (baseline and guided) and investigate the development of the accuracy
of the resulting models on our three different test sets.

Figure 8.5: Accuracy on the heldout tables setup for all models in our grid search.
The plot illustrates the across the board difference between the two models: even
the worst models trained with attentive guidance (green dotted lines) generalise
better than the best baseline models (magenta lines).

8.4. Experiments 139

Our grid search confirms the findings of Lǐska et al. (2018) that vanilla recurrent
models cannot solve the lookup table task, irrespective of recurrent unit and
network size.6 The baseline performance slightly increases with hidden layer size,
but never reaches an average accuracy of higher than 30% across the heldout data,
even though all models have a near-perfect performance on the training data. The
guided models, on the other hand, appear to require a certain hidden layer size to
generalise well, although even the smallest guided models outperform the larger
baseline models. To illustrate this, I show the development of the accuracy for
the heldout tables case for all baseline (magenta) and guided (green) models in
Figure 8.5.

Figure 8.6: Typical task loss development for baseline and guided models on
all different test sets (AG loss not depicted). Both the baseline and models
trained with attentive guidance converge quite quickly on the training set (black
lines). The baseline model strongly overfits the training data, as indicated by the
increasing loss for the different test sets (magenta lines). The guided models, on
the other hand, do not overfit: their loss on the test sets only decreases as the
training progresses (green lines).

Furthermore, in Figure 8.6 we see that all baseline models exhibit overfitting:
while their training loss decreases quickly, after an initial decrease, their test loss
instead increases. The guided models, on the other hand, do not overfit at all,
their test loss decreases steadily and never rises.

6Hupkes et al. (2019c) furthermore show that also the precise attention mechanism and
whether the attention weight vector is computed before or after the recurrency in the decoder
does not have an impact on the model performances.

140 Chapter 8. Attentive Guidance

8.4.2 Evaluation of best configurations

heldout
inputs

heldout
compositions

heldout
tables

0

0.5

1
S

eq
u

en
ce

ac
cu

ra
cy

Guided
Baseline

Figure 8.7: Average accuracies on all different test sets for chosen configurations for
the lookup-table task. The guided models (green) strongly outperform the baseline
models (magenta) in all different test conditions and exhibit a low variance across
runs. The error bars indicate the performance of the worst and best-performing
model on an individual test set.

For both the baseline and the guided models we pick the configuration that has
the best performance across the test sets. We find the best baseline configuration
to be a model with an embedding size of 128 and a hidden layer size of 512,
whereas the best guided configuration has 16 and 512 nodes for embeddings and
hidden layers, respectively. To evaluate the chosen configurations, we generate
four new instances of training and testing data, generated with similar criteria,
but with different instances. For each configuration and sample, we train two
models, using Adam as optimiser (lr=0.001), resulting in 8 different runs for both
baseline and guided models. The average accuracies can be found in Figure 8.7.

As expected, all baseline models fail to capture a compositional strategy
and perform poorly across all test sets.7 All guided models, however, achieve a
near-perfect generalisation accuracy to the simplest case of generalisation and
also generalise well to compositions that are not seen at all during training
(heldout compositions). For the most difficult case, which requires using tables
compositionally that are only seen atomically (heldout tables) the generalisation
accuracy goes slightly down, and not all models converge to a perfect performance.

Overall, these results provide a clear demonstration that attentive guidance
very effectively directs models to more compositional solutions.8

7It should be observed, however, that the baseline models still perform well above chance
level, which lies at 0.2% for this task.

8Hupkes et al. (2019c) provide results also for another task, which I chose not to discuss here.

8.5. Compositionality in parameters 141

8.5 Compositionality in parameters

In the previous section, we saw that encoder-decoder models can be guided to find
better generalising solutions for the lookup table task by providing them with
a loss signal that indicates which parts of the input are relevant at which stage
of processing. As the models trained with and without this signal differ only in
terms of the information they received during training, they provide an interesting
test case: architecturally the models are identical, but they implement different
solutions to the same problem. If the guided models differ in some notable aspects
from the baseline models, this could potentially be exploited also in situations
where such a learning signal is not available – for instance because no annotation
for the ‘correct’ attention pattern is available, or because it is unclear what this
pattern should be.

In the remainder of this chapter, I present a series of explorative experiments
in which I aim to understand if the difference in solution can be detected also
from the parameter space or the activations of the models.9 In these experiments,
I bring back several of the techniques proposed or used in the previous chapters of
this thesis, such as ablation (Chapter 6), visualisation (Chapter 3) and diagnostic
classification (Chapter 5).

8.5.1 Weight heat maps

I first consider the learned parameters (or weights) of the network. In particular,
we look at:

encoder embeddings Used to embed the inputs to the model

decoder embeddings Used to embed the previous output of the model

WD
hz and WD

iz Weights from decoder hidden and input to update gate

WD
hr and WD

ir Weights from decoder hidden and input to reset gate

We generate weight heat maps in which every cell (x, y) represents the forward
connection from a unit y going to another unit x. For instance, Figure 8.8 depicts
a visualisation of the decoder embeddings of the baseline and guided models. The
11 nodes on the y-axis represent the 11 output tokens of the model. The first three
nodes represent the end of sequence, padding symbol and beginning of sequence
symbol, respectively; the last eight the eight model outputs (000, 001, etc). The
512 nodes on the x-axis represent the 512 dimensions of the embedded tokens.
Each point (x,y) in this plot thus represents the connection from vocabulary token
y to embedding unit x.10

9All results I report are averages over five models.
10Note that we do not normalise reported weights or activations by the activity of the ’pre-

synaptic’ neurons connected to it. This would be interesting to explore in future research, since a

142 Chapter 8. Attentive Guidance

(a) Baseline (b) Guided

Figure 8.8: Heat map of the decoder embedding weight values. Each row represents
the connections of an input neuron (corresponding to one word) to the embedding
layer of the decoder.

The decoder embedding visualisation also shows the most striking difference
between the guided and baseline models. Generally, the baseline model exhibits
small weights for the output tokens, whereas the weights of the guided models are
both larger and have a larger variance. Row number two, which is equally strong
for both networks, forms an exception. This row represents the embedding for the
start of sequence token <sos>, which is used to initiate the decoder generation.

8.5.2 Connection maps

While the heat maps for lower dimensional layers are still somewhat interpretable,
heat maps for connections between components of larger dimensionality do not
provide much insight. To visualise the connections between such layers, we generate
a plot in which we represent the neurons as nodes and the weights as edges; The
thickness and colour of an edge represent the magnitude of the weight. We apply
a threshold to remove edges that corresponded to weak weights. For this pruning
step, we use a threshold of ±0.2 and ±0.17 respectively, which corresponds on
average (between guided and baseline models) to keeping the strongest one per
cent of the weights.

In Figure 8.9, I show a typical picture of the encoder update gate weights Whz

and Wiz. Every line going up represents a connection weight from a hidden or
input unit (i.e. a unit of the layer representing the token embeddings) to the
update gate of the encoder.

A striking difference between the baseline and guided models is the distribution
of the connections. The connectivity of the baseline model is relatively evenly
distributed over the different neurons. The guided model, on the other hand,

neuron’s activation and the importance of its weight is in part dependent on the mean activation
of its predecessors.

8.5. Compositionality in parameters 143

(a) Baseline, update gates Whz. (b) Guided, update gates Whz.

(c) Baseline, Decoder update gates Wiz. (d) Guided, Decoder update gates Wiz.

Figure 8.9: Visualisation of weight matrices Whz (top) of the encoder and Wiz

(bottom) of the decoder. Weights going from the previous to the next layer are
represented by lines going from bottom to the top. The color reflects the weight
value, where blue denotes negative, red positive and white zero. Best viewed in
color.

has some neurons whose connectivity is strong, and others that do not have
many connections. Such neurons that have many strong connections occur in the
top layer of the encoder of the AG model in Whz and Whr. Similarly, strongly
connected neurons can be found at the bottom layer of the AG’s decoder in Wiz

and Wir. The same pattern holds for the recurrent Whh weights. The finding of
highly connected neurons suggests that guided models learn to specialise using
fewer but more strongly connected neurons, which could help to learn a more
modular solution.

Another interesting phenomenon is the apparent polarity of the strongly
connected units in the guided models: there are a few distinct units whose
connection weights are positive or negative, but not both. Interestingly, when
considering the update gate weights of the same neurons (not shown), their polarity
flips. Neurons that have very strongly positive weights to the update gate have

144 Chapter 8. Attentive Guidance

generally negative weights to the reset gate, and vice versa. A potential explanation
for this is that when information from the current hidden state is to be retained,
that same part is being reset in the previous hidden state.

8.6 Compositionality in activations

Following the hypothesis suggested by the parameter analysis of the model – that
the guided models have more specialised groups of neurons that respond to specific
stimuli – I now proceed with analysing the activations of the trained models.

8.6.1 Specialised neurons

First, I present a plot of the activation values of the baseline and guided models
over time (Figure 8.10). To generate this plot, we randomly sample 50 neurons
of both guided and baseline models and track their activation values emitted
over time. Both in the encoder and decoder activations exhibit strong differences
between baseline and guided models. Most striking are the encoder activations of
the guided models, which confirm the existence of polar neurons that have only
positive or only negative activations. In general, the encoder activations of the
guided models produce activations in more specific value ranges than the baseline
models, which I carefully take as a hint of potential specialisation. Also in the
decoder of the guided models, a few polar neurons can be found, although most
of the neurons uniformly cover the whole value range during processing.

Encoder units

I now present a more target analysis of which encoder neurons are crucial for
encoding the relevant lookup tables. To do so, we use diagnostic classification (see
Chapter 3).

The encoder processes inputs that consist of sequences of lookup tables and
the input to those lookup tables. We train diagnostic classifiers to predict the
lookup table from the encoder’s activations at the time step where this lookup
table was just presented. For example, if the input was 000 t1 t2, we train the
classifier to predict t1 from the encoder activations of the second time step and
to predict t2 for the activations of the third time step.

To find the units that are involved in encoding the tables, we then use a
procedure similar to the method of Dalvi et al. (2019). Starting from an empty set,
we keep adding units – taking always the unit with the highest absolute weight in
the diagnostic classifier – until the set of added units together have an accuracy of
95% of the accuracy of all units.11 I show the results in the first row of Table 8.1;

11Unlike Dalvi et al. (2019), we do not use any regularisation on the diagnostic classifier to
contrast the different degrees to which information is distributed across neurons in the two

8.6. Compositionality in activations 145

(a) Encoder: Baseline

(b) Decoder: Baseline

(c) Encoder: AG

(d) Decoder: AG

Figure 8.10: Distributions of activation values for 50 randomly sampled neurons
for baseline (blue) and AG (orange) for both encoders (top) and decoders (bottom).
Whiskers show the full range of the distribution. (Best viewed in colour)

All numbers are averaged over the five trained models.
For both baseline and guided models it is possible to predict the tables from

the hidden activations with a high accuracy. However, there is a strong difference
in the number of neurons required to do so (column three). The baseline models
require on average 35 units to make a good prediction, the guided models need
only two.

To verify whether the units in the detected groups (which I refer to with the
term functional groups) are actually important units in the model, we consider
the strengths of the connection weights of each of these units. On average, 93% of
the units in the functional group of the AG models can be found in the top 5% of
the units with the strongest absolute weight values. We conclude that the units
of the functional group are highly connected and thus likely to play an essential
role in the functionality of the model.

model types.

146 Chapter 8. Attentive Guidance

Model Full DC Accuracy #Units Group accuracy

henc
t

Baseline 0.98 35 0.93
Guided 1.0 2 0.98

zdec
t

Baseline 0.53 52 0.51
Guided 1.0 22 0.96

rdec
t

Baseline 0.52 44 0.50
Guided 1.0 21 0.96

Table 8.1: Accuracy of the diagnostic classifiers trained to predict the most recent
lookup table from the hidden activations (henc

t) of the encoder and the input and
reset gate activations (zdec

t and rdec
t , respectively) of the decoder of both baseline

and guided models. Column two shows the accuracy of the diagnostic classifier,
column three indicates the number of neurons required to arrive at at least 95% f
this accuracy, column four the accuracy of this reduced group of neurons.

Decoder gates

By analysing the encoder activations, we saw that the lookup tables in the input
could be reliably predicted both from the encoder activations of the baseline and
guided models. Now, we focus on the decoder activations and test if the lookup
tables can also be predicted from the decoder gates, which modulate the processing
in the decoder. We use the same methodology as in the previous experiment: we
train diagnostic classifiers on the update and reset gate of the decoder, respectively,
and we then find the minimal number of gate units required to obtain 95% of the
full diagnostic classifier accuracy. I show the results in the second and third rows
of Table 8.1.

For the decoder gates, a difference between the guided and baseline models
already arises for the full diagnostic classifier accuracies. The current lookup table
can be perfectly predicted from both the update and reset gate of the guided
models; For the baseline models, an accuracy of only around 50% is reached.12

Also, compared to the encoder hidden layer, much larger functional groups are
required to arrive at 95% of the maximal accuracy. Where the lookup table
information in the encoder hidden layer of the guided models was inferable from
on average just two neurons, more than 20 decoder gate units are needed to infer
the same information. The information is thus more distributed over the gates.

This difference could be explained by the fact that the function of the gate
differs from the function of the hidden layer. Whereas the hidden layer activations
represent and store information, the gates instead use this represented information
to modulate the flow of information through the network. Even information that
is represented very locally may still have an impact on several other units, which

12Accuracy with a majority classifier for the task is 12.5%.

8.6. Compositionality in activations 147

(a) Encoder: Baseline

fraction left saturated

(b) Decoder: Baseline

(c) Encoder: AG

(d) Decoder: AG

Figure 8.11: Gate activation plots for reset gate rt and update gate zt. Best
viewed in colour.

would be reflected in a more distributed representation of this information in the
gates. Additionally, a gate unit affects only a single hidden unit, while a hidden
layer unit can potentially affect all gates in the upcoming time step, making
distribution of information across the gates more likely.13

8.6.2 Gating behaviour

Both previous experiments point to differences in the gate usage between the
guided and baseline models. As a last step in our study of the models’ activations,
we take a closer look at the gate activations by considering the visualisation
method of Karpathy et al. (2015) that I also used in Chapter 3. This method
considers, for each gate in the network, the fraction of samples for which it is
closed (or left-saturated, defined as having an activation smaller than 0.1) or open
(right-saturated,activation greater than 0.9).

Recall, as I explained in Chapter 2, that the reset gate rt of a GRU model
determines to what extent the next candidate hidden state depends on the previous
hidden state (Equation 8.4). The update gate zt decides the extrapolation factor

13In fact, if we do the same experiments with the encoder gates, we observe a very similar
pattern. The lookup tables can not be reliably predicted from the baseline encoder gates, but can
be from the guided model encoder gates; the minimal number of units required to approximate
this accuracy for the guided models is around 20.

148 Chapter 8. Attentive Guidance

between the previous state and the candidate state (Equation 8.5):

h̃t = tanh(Wxt + rt � U(ht−1) + b) (8.4)

ht = (1− zt)� ht−1 + zt � h̃t (8.5)

The gate saturation plots indicate how a model uses its gates: Are they
frequently open or closed or almost never? Do they have a preference for either
one or the other? In our case, the plots (show in Figure 8.11) confirm the difference
between the usage of gates of the baseline and guided models that we also found
in the previous sections. The guided models appear to make more use of their
gates: Reset gate activations generally stick to the axes, indicating that they are
sometimes open (or most of the times, depending on the position on the axis)
but never closed, or the other way around. The update gate units of the decoder
instead are positioned on the diagonal, indicating that they are almost always
either open or closed, and almost never anything in between.

The gate units of the baseline units do not show such a behaviour, but they
do show a clear distinction between the update and reset gates values. The reset
gate units are neither frequently open nor frequently closed, as indicated by their
position in the left bottom corner of the plot. Their values are thus usually higher
than 0.1 and lower than 0.9. Almost all update gate units are frequently open,
indicating that the model does not optimally use the expressivity of the gates.

8.7 Ablation and substitution studies

In this section, I describe two experiments that involve ablation of components or
groups of neurons to uncover which parts of the guided models are responsible
for the improvement in solution. Are there specific components of the network
that are particularly important for the solution? Can the neurons with strong
connectivity that we observed in the previous sections perhaps solve the task also
without the other neurons?

8.7.1 Component substitution

First, I focus on the contribution of the different parameter sets of the model.
To learn about their impact, we extract the entire weight set from a guided (or
baseline) model and put it into a trained baseline (or guided) model. Then,
keeping the extracted component frozen, we retrain the rest of the parameters of
the model with a low learning rate to adapt to the new component. We retrain
guided models with a baseline component using the attentive guidance signal and
baseline models with a guided component without.

If we retrain a guided model with a frozen baseline component, we expect the
performance to drop if that component was important for a compositional solution,

8.7. Ablation and substitution studies 149

as the network is unable to recover itself. Conversely, if a baseline model with a
frozen component extracted from a guided model is retrained without guidance
and performs better, that component might contain weights organised in such
a way that it forces the baseline model to retrain itself in a more compositional
manner.

Setup

We consider eight different components:

� The entire encoder and decoder;

� The encoder and encoder weights from input to hidden (WE
ih and WD

ih);

� The encoder and decoder recurrent weights from hidden to hidden (WE
hh and

WD
hh);

� The encoder and decoder embedding weights (EmbE and EmbD).

For each component, we tune 16 models by retraining the remaining original
parts for a maximum of 100 epochs, with a learning rate of 0.001 to allow for
limited adjustment.

Results

None of the baseline models with a frozen guided component are able to retrain
themselves such that their performance significantly increases. I report the
sequence accuracies of the retrained guided models with frozen baseline components
on the new compositions test set in Table 8.2.

For the AG models with frozen baseline components, the encoder embeddings
seem irrelevant for a compositional solution: using baseline embeddings result in
a similar score. The decoder embeddings, however, do seem to play a role. The
retrained accuracy with baseline decoder embeddings is much lower than the score
of the original guided model. This seems to be in line with the differences in heat
maps shown earlier in Figure 8.8. Replacing the entire encoder results in a 80%
drop in accuracy to 0.167.

Interestingly, the recurrent encoder hidden to hidden (Whh) weight matrix can
be replaced without as big a drop, and using the baseline input to hidden (Wih)
weights improves the accuracy. Finally, replacing the decoder’s Wih weights drops
the accuracy to around 0.6, but doing the same for the decoder’s Whh weights
again results in an unexpected increase to almost 0.9. This seems to indicate
that the Wih weights of the decoder play an important role in a compositional
fit, as the model is unable to recover itself when using baseline decoder Wih

weights. The increase in performance after replacing either the encoder’s Wih or
the decoder’s Whh implies that training with AG actually produces suboptimal

150 Chapter 8. Attentive Guidance

Model Substituted Component Accuracy
Guided - 0.82 ± 0.12
Guided Encoder 0.17 ± 0.11
Guided Decoder 0.12 ± 0.05
Guided EmbE 0.75 ± 0.09
Guided EmbD 0.31 ± 0.07
Guided WE

ih 0.89 ± 0.05
Guided WE

hh 0.79 ± 0.12
Guided WD

ih 0.60 ± 0.08
Guided WD

hh 0.91 ± 0.03

Table 8.2: Sequence accuracy on the new compositions test set. Accuracy is
averaged over three models and shown with standard deviation. All retrained
models are guided models, as indicated in the first column. The second column
indicates the baseline component that is taken from a baseline model and frozen
during retraining. The third column indicates the accuracy after retraining.

weights for these components. Perhaps the use of a frozen baseline component in
a model retrained with AG acts as some kind of regularisation and incentivises
the remaining components of the model to become more compositional. Another
explanation could be that the AG loss does not provide an appropriate signal for
all components, and should thus not be back-propagated to all of them.

8.7.2 Neuron pruning

After showing in Section 8.6.1 that a few strongly connected neurons organised in
functional groups carry out specific functions, we want to exhaust this observation
and see if the model can still successfully solve the task by using only those
strongly connected neurons. We remove all weakly connected neurons, keeping
only 5% of neurons with the biggest weights of the encoder and decoder of the
guided models, respectively. Averaged over all models, distilling the network in
this way results in a performance drop to 12.4% sequence accuracy on the new
compositions task.

We then retrain the network 20 epochs (in the way specified in Section 8.4),
which fully restores the functionality and even yields better performance: 92.5%
on average compared to the full network with 82.3%.

The loss in performance that occurs when neurons are removed indicates that
some functionality is distributed among weakly connected neurons. However,
the fact that their functionality can be taken over by other neurons shows that
weakly connected neurons do not play a crucial role. We conclude that most of the
neurons do not contribute to the solution and therefore only an extremely small
subset of all neurons of the model suffices to solve the task after retraining. Those

8.8. Conclusion 151

neurons exhibit strong weights and are specialised in functional groups. Networks
that find a compositional solution seem to rather form a small number of highly
specialised neurons than distributing functionality over the whole network.

Independently, similar results were found also by other research groups. Frankle
and Carbin (2019) present a study with feed-forward and convolutional networks
in which they show that over 90% of a trained model’s neurons can be pruned
without compromising the accuracy of the model. Frankle and Carbin (2019)
argue that these successful sub-networks received a lucky lottery ticket in the
initialisation procedure, which is not easily found when a network is trained with
a small number of neurons from the start.

In a different domain, Voita et al. (2019) show that in transformer models
trained to perform machine translation, the vast majority of attention heads can
be removed without seriously affecting the model’s performance. Their and our
results illustrate that while the current initialisation and optimisation techniques
have resulted in a gigantic leap forward when it come to the applicability of neural
network, there is still much room for improvement.

8.8 Conclusion

In the first five studies I presented in this dissertation, I focused on the analysis of
already trained models. In this last chapter, I took a slightly different approach: I
tested whether I could interact with the network through its learning signal, to
change the type of solutions found by the network. Afterwards, I compared the
different solutions using many of the techniques discussed in the earlier chapters.

This study started from the assumption that one of the main reasons that a
model’s solutions sometimes deviates from the desired solution is that the model
does not correctly segment the input. If a model memorises a part as a whole that
was in fact made up from different parts, this may result in a failure to generalise
to a different sequence which is made up from these parts. I tried to address
this issue with Attentive Guidance, an additional learning signal that – through
the attention component of a model – indicates to the model what the salient
subsequences are.

First, I showed that this learning signal indeed helps the model, resulting in
across the board accuracy increases on the lookup table task (Lǐska et al., 2018),
which was specifically designed to test for compositional solutions. This confirms
the hypothesis that one of the reasons models do not always generalise correctly
stems from the fact that they assume a wrong segmentation of the input. Barrett
et al. (2018) showed that attentive guidance can also be successful in scenarios with
natural data. Using attentive guidance with a signal coming from human attention
estimated from eye-tracking corpora, they obtained a substantial improvement for
a number of natural language processing tasks, such as sentiment analysis and
grammatical error detection. Further research could focus on identifying other

152 Chapter 8. Attentive Guidance

scenarios in which human attention or other types of human data might aid neural
models in finding generalising solutions.

Then, I compared the models trained with and without attentive guidance,
to understand if the difference in solution was detectable from the parameter
space and neuron behaviour of the trained models. With several experiments –
using, among other things, diagnostic classification and ablation – we found that
the guided models develop specialised neurons organised in functional groups.
No such groups were found in the baseline models. Furthermore, the guided
models develop polar neurons, and they appear to make better use of their gates.
Future research could focus on exploiting these findings about modularity and
specialisation of neurons to investigate whether similar solutions can be achieved
without the explicit use of attentive guidance.14

14See, e.g. Korrel et al. (2019).

Chapter 9

Discussion and conclusions

The main research goal I formulated at the beginning of this dissertation was
to understand if neural networks can be used as explanatory models of natural
language processing. On page 2, I described three generic requirements for
explanatory models of human processing:

i) Architectural similarity: The model should share some relevant aspects
of processing with humans;

ii) Behavioural similarity: The model should be able to adequately approx-
imate the phenomena we are interested in understanding;

iii) Model interpretability We should be able to obtain insight into how it
implements or processes these phenomena.

In the seven chapters that followed, I argued that recurrent neural networks
share some relevant aspects with the human processing system, making them
satisfy requirement i), and I investigated if they also satisfy requirement ii)
and iii). I looked at processing of different types of hierarchical structure and
compositionality – in linguistics regarded important aspects of natural language
– considering both artificial languages (Chapter 3 and 4) and natural language
(Chapter 5 through 7). I explored a range of techniques to understand the internal
dynamics of neural networks, such as diagnostic classification (Chapter 3 and 5),
neuron ablation (Chapter 6 and 8) and generalised contextual decomposition
(Chapter 7). I considered how the networks behaviour can be influenced at both
training and inference time (Chapter 8 and 5, respectively).

In this last chapter of this dissertation, I recapitulate what I have done in these
studies, starting from the three requirements listed above (Section 9.1, 9.2 and 9.3).
I also briefly discuss the potential impact of interpretability research on society
(Section 9.4) and sketch some potential paths for future research (Section 9.5).

153

154 Chapter 9. Discussion and conclusions

9.1 RNNs as abstractions of human processing

One function of an explanatory model is to help understand something for which a
full explanation is not known or available. For an explanatory model to serve that
function, it should share some relevant properties with this thing or phenomenon
it is a model of. Which properties are relevant depends on the particular aspects
that the researcher aims to understand. For instance, to help understanding
gravity it may be useful to consider a model in which friction does not exist, but
to understand the terminal velocity of objects when you throw them off a high
building, including friction is important.

In this dissertation, I chose to primarily focus on recurrent neural networks.
One reason for this decision was simply that many of the studies I described
preceded the invention of attention-based transformer-like models (Vaswani et al.,
2017) that currently dominate the state of the art in NLP (e.g. Radford et al.,
2019; Devlin et al., 2019). However, recurrent models also share some properties
with the human language processing system that attention-based models do
not. In particular, they are temporally structured and receive their input in
an incremental fashion. As such, they might provide insight in the potential
mechanics that allow humans to process natural language – incrementally, with
a system of interconnected units. It is therefore my conviction that to serve as
explanatory models of language processing, recurrent models are more promising
candidates than attention-based models.

While attention-based models may not be directly suitable to understand
questions about human processing1, this does not imply they cannot be used as
explanatory models of language at all. On the contrary: their successes make
them interesting models that can be used to discover more about the (static)
structure of language. Many of the experiments described in this dissertation could
also be conducted with attention-based models, which would provide a different
kind of insight in the nature of the symbolic structure of language. Some of the
experiments I described have already been applied to them. For instance, Goldberg
(2019) and Wolf (2019) considered how well such models process subject-verb
agreement, using tests similar to the ones described in Chapter 5 and Chapter 6.

9.2 Can RNNs represent interesting structure?

The second criterion I formulated concerned a model’s ability to represent or
approximate the phenomenon that we are interested in. I focused specifically on
hierarchical structure and compositionality. Discovering what types of structure
RNNs can correctly process under different circumstances has been a central
theme in almost all of the chapters presented in this dissertation. These chapters

1A potential exception to this may be the recent GTP-2 model (Radford et al., 2019), which
– since it is a language model – also receives its input in an incremental fashion.

9.2. Can RNNs represent interesting structure? 155

all show that while models may not always find the solutions we expected or
intended, RNNs can certainly capture interesting aspects of hierarchical structure
and compositionality. I now briefly recap those findings.

9.2.1 Artificial languages

In Chapter 3 and Chapter 4, I considered artificial languages. Artificial languages
provide a clean setup to study the abilities of RNNs to process structure, which
allows to isolate specific aspects and facilitates evaluation.

Arithmetic languages In Chapter 3, I experimented with the arithmetic lan-
guage. This language contains sentences that are spelled out arithmetic expressions
with the operators plus and minus, whose meaning is defined by the outcome of
the arithmetic expression. Due to the clear symbolic structure of this language, I
could formulate hypotheses about how the network may process the sentences.

PCFG SET In Chapter 4, I used the artificial language PCFG SET to tease
apart different aspects of processing structure, with a particular focus on what
it actually means for a network to behave compositionally. In this chapter, I
laid out five different tests, that considered different aspects and implications of
compositional processing. While these tests provided interesting results about
RNNs, the development and contextualisation of the tests constituted the most
important contribution of this chapter. As an exception, I therefore “tested the
tests” not only on RNNs, but also on convolution and attention-based architectures.

Results Both studies showed that recurrent models can learn to correctly predict
the meanings of languages with a strongly hierarchical compositional structure.
Interestingly, both studies also showed that if a model correctly learns to process
structured sentences, this does not necessarily imply that they also processed the
structures as intended. For instance, the models trained to predict the meaning
of arithmetic expressions did not do so by following a linearised recursive strategy.
Instead, they take a cumulative shortcut in which they count the number of
embedded minus signs, which does not require keeping track of an elaborate stack.

The study with PCFG SET further illustrated that correct predictions do not
entail that the model comes to these predictions by systematically recombining
the parts defined by the researcher; they do not entail that the model can deal
with something like synonym substitutions, and they do not entail that the rules
a model learns match the general rules from which the data was generated. The
first finding is further strengthened in Chapter 8, in which I show that providing
a feedback signal to the model that helps it identify salient subsequences helps
the model to correctly process temporally structured inputs.

156 Chapter 9. Discussion and conclusions

The deviation of the conclusions drawn from behavioural experiments (what
does the model do) and internal inspection (how does the model implement this)
sketches an interesting contrast. They show that a model can behave like it
understands hierarchical structure but yet not understand some of the components
that many assume to be implied by this understanding. This discrepancy raises an
important question: what does it mean to correctly process structure? Should the
behavioural tests be changed to better match what we believe correct processing
should entail? Or should we revise the components we thought were essential?

9.2.2 Natural language

In the second part of this dissertation, in Chapter 5, 6 and 7, I considered
language models, trained on natural data (a corpus with English sentences).
Following Linzen et al. (2016), I probed their ability to process hierarchical
structure by considering their predictions on sentences with long-distance subject-
verb relationships. These studies all confirmed results from earlier studies that
recurrent models are able to model these relationships well, even if the subject and
the verb are separated by quite some intervening sentential material, including
multiple attractor nouns.

Focusing on one particular pre-trained LSTM model, the studies also uncovered
different aspects of the mechanisms that neural language models use to model
these relationships. Chapter 5 revealed that the model has two distinct types
of number representations: a shallow representation – used for short distance
agreement, and a deep representation that remains more constant when a long-
distance dependency is processed. Furthermore, by splitting the corpus based on
whether the model correctly or incorrectly processed the long-distance relationship,
I showed that incorrect sentences typically go wrong already when the number of
the subject is encoded.

Chapter 6, with a more controlled data set, confirmed and further uncovered
the two distinct mechanisms that the model uses to process number information.
The study described in this chapter showed that long-distance number information
is primarily processed by a surprisingly local mechanism, consisting of just two
units that are responsible for storing long-distance number information (plural and
singular, respectively).2 Short distance number information, as well as syntactic
information, is represented in a more distributed fashion.

Chapter 7, exposes another interesting aspect of how the model processes
subject-verb relationships: it uses its intercept terms (also known as bias terms)
to perform default reasoning. The prediction of plural verbs is strongly causally
linked to the grammatical subject of the sentence, while singular verbs do not
require explicit evidence from singular nouns.

2The locality of this mechanism implies that the model cannot correctly process subject-verb
agreement in specific types of doubly embedded structures. We are currently investigating this,
both in models and in humans.

9.3. How can we interpret neural networks? 157

9.3 How can we interpret neural networks?

The last requirement I formulated concerned the interpretability of explanatory
models. To use a model as explanatory model, it is important that we at least
to some extent understand how it implements the things we are interested in. A
model being able to perform subject-verb agreement on par with humans provides
only very limited explanation if we cannot then use this model to identify the
mechanisms by which it does so. Without interpretability, such results at best
teach us that recurrent models are adequate approximators of the phenomena we
are interested in, but even that is difficult to establish if the model is treated as a
black box.

In the previous section I already briefly summarised some of the mechanisms
that we discovered. Arriving at these findings required the development and use
of different interpretability techniques, which I reiterate now.

9.3.1 Diagnostic classification

One of the most prominent techniques proposed and used in this dissertation is
diagnostic classification. Diagnostic classification can be used to test what kind
of information a model computes or represents. Its key idea is to train a meta
model to predict some hypothesised information from the internal states of the
model. For instance, one could predict part-of-speech tags from the internal states
of a trained language model. If the meta-model can predict the hypothesised
information from the original model’s internal states with a high accuracy, this
indicates that the hypothesised information is indeed represented in these states,
whereas a low accuracy indicates the opposite.

Applicability Due to its simplicity, diagnostic classification is a powerful and
versatile tool, which can be used for any type of neural model. It is by now part of
the standard toolkit of interpretability research.3 It has by now been used in many
different scenarios, by both me and others. For instance, we used it to investigate
how artificial dialogue agents process disfluencies (Hupkes et al., 2018a); how neural
language models process negative polarity items (Jumelet and Hupkes, 2018); to
what extent different type of sequential model build incremental representations
(Ulmer et al., 2019); and what information is encoded in the messages of languages
emerged in a referential game (Hupkes et al., 2019b). Others have used diagnostic
classification to investigate the internal representations of BERT (e.g. Lin et al.,
2019; Tenney et al., 2019a; van Aken et al., 2019); to analyse what type of features
neural machine translation models represent (e.g. Belinkov et al., 2017b, 2019),

3When we proposed diagnostic classification in 2016 (Veldhoen et al., 2016), independently,
also other researchers groups proposed to use similar techniques (Adi et al., 2017; Belinkov
et al., 2017a; Gelderloos and Chrupa la, 2016; Shi et al., 2016; Ettinger et al., 2016). Diagnostic
classifiers are also known by the name probing classifiers.

158 Chapter 9. Discussion and conclusions

and to find syntax trees in pre-trained word representations (Hewitt and Manning,
2019).

Limitations and difficulties While being a versatile tool to, among other
things, investigate a model’s internal states, diagnostic classification has also
several limitations. Firstly, it requires an hypothesis about what the model
might be representing, such as the strategy it might be pursuing to compute the
meaning of a sentence in the arithmetic language. This hypothesis-driven nature
implies that the technique can only be used to confirm or reject hypotheses that
the modeller came up with himself and is not applicable for more open-ended
explorations.

Furthermore, not all types of hypotheses can be tested with diagnostic clas-
sification. If a complicated (non-linear) meta-model is required to extract the
hypothesised information from the internal states of the model – for instance
because the model may not use this information in a linear way – it is difficult
to assess whether this information was in fact represented by the model or was
computed afterwards by the meta-model (a point also made by Saphra and Lopez,
2019b). This issue may be addressed by comparing different hypotheses, as done
in Chapter 3, rather than focusing on the accuracy of a single diagnostic classifier.4

A related issue concerns the extent to which the information extracted by the
diagnostic classifier is in fact used by the model. Even for very simple diagnostic
classifiers, it may be difficult to assess if there is a causal relationship between the
extracted information and the model’s behaviour. Intervention studies (Chapter 5)
can be a powerful tool to confirm that the information extracted by the diagnostic
classifier is in fact causally related to the behaviour of the model. In some cases,
if a diagnostic classifier indicates that a set of specific neuron together encode
a particular feature, ablation studies may help to confirm such a result (see
Chapter 5).

In summary, diagnostic classification is a useful tool when specific hypotheses
are available. It may provide different kinds of information concerning when and
where information is represented, and whether this representation is sparse or
distributed. The results of diagnostic classification studies can be confirmed with
a follow-up study that uses a different type of interpretability technique.

9.3.2 Ablation

In Chapter 6 and 8, I described several experiments that used neuron ablation.
The idea behind it is simple: turn off the activations of a particular neuron or
group of neurons and evaluate what is the impact on the model’s behaviour.

4Hewitt and Liang (2019) recently proposed to use control tasks, that can also be used to
calibrate the accuracy of a diagnostic classifier.

9.3. How can we interpret neural networks? 159

Applicability and limitations Neuron ablation can be an effective tool to
uncover mechanisms that are encoded in single neurons. It does not require a
specific hypothesis, but, as illustrated in Chapter 6, it does require a carefully
designed data set to understand what the effects are of ablating a neuron or
group of neurons. Given their combinatorial complexity, they are not suitable to
find groups of neurons that together have an impact on the model’s behaviour.
However, they can be used to confirm the role of groups of neurons found with
other experiments, such as diagnostic classification experiments.

9.3.3 Generalised Contextual Decomposition

The last technique I discussed in this dissertation is Generalised Contextual
Decomposition (GCD), a generalisation of a technique proposed by Murdoch et al.
(2018). GCD can be used to track the contributions of different input tokens or
model components to the behaviour of the network and to study the interactions
between different components and input words.

Applicability An important advantage of GCD is that it does not rely on a
model’s behaviour, which makes it more applicable in situations where neither
diagnostic classification nor ablation studies are of help. For instance, GCD can
be used to consider pronoun resolution in sentences such as The boy told his friend
that he liked her (see Jumelet et al., 2019). For such sentences, it is not possible
to determine if the model correctly resolves the pronouns by looking at its word
probabilities: what matters is not the probability mass of the words his and her,
but why the model assigned this probability mass to these words. GCD tracks
exactly that, and it can thus be used quite generically to understand the causal
relationships between the input and the model’s behaviour.

Limitations GCD is computationally more complex than diagnostic classifi-
cation, but much lighter than neuron ablation. It is designed to give a faithful
explanation of how information flows through the model. However, to come to
this explanation, several non-trivial choices have to be made. The contributions
computed with GCD are not exact but an approximation, and it is unclear how
much the approximation technique impacts the results.

Furthermore, to define how the information from a particular word or compo-
nent flows forward, GCD requires to select which interactions with other words
and components should be considered. GCD allows to specify this interaction set
per experiment, but it is not always evident which interaction set best serves the
current research question.

Lastly, while GCD is computationally relatively efficient once the interactions
are decided and the approximations implemented, the technique does not easily
extend to different types of models. Formulating GCD for a GRU model would

160 Chapter 9. Discussion and conclusions

still be relatively straightforward, as it only requires adapting the interaction sets
to the gates and components of the GRU; defining GCD for transformer-based
models, which have many more multiplicative interactions than recurrent models,
would be substantially more difficult.

9.4 The societal impact of interpretability

With the increasing ubiquitousness of neural networks in applications used in the
public domain, their interpretability has become a topic of increasing importance
also for society. Neural networks are used in many situations where it is important
to understand what they implement or how they reason, and whether they may
unintendedly encode unwanted biases. While societal impact was not my initial
motivation to develop interpretability techniques, the topic came up several times
during my studies. Most prominently, it arose when we developed generalised
contextual decomposition.

In Chapter 7, I reported the results of a study in which we used GCD to
analyse how a recurrent model processes subject-verb relationships. In the same
project, we also did another study, on which I did not report in Chapter 7 in the
interest of brevity. I would like to briefly discuss the findings study here, as an
example of how interpretability research can contribute to society.

9.4.1 Pronoun resolution

In our experiments, we considered intra-sentential anaphora resolution, in which
a pronoun within a subordinate clause refers to an entity in the main clause.
For example: The boy liked the girl because she was always nice to him. In all
sentences we used, the pronouns should be resolved based on gender information.

For sentences like this, it is not easy to find a setup where there is a right
prediction that indicates whether the model correctly or incorrectly identifies the
referent of the pronouns. With GCD, however, this can be easily established, by
computing to what extent the probability mass of the words she and him are
caused by the words girl and boy, respectively.

9.4.2 Corpus

We apply GCD to a corpus with sentences generated using the WinoBias corpus
templates created by Zhao et al. (2018). The WinoBias corpus contains sentences
with two nouns in the main clause, that are referred back to by two pronouns
in a relative clause. As nouns, the WinoBias corpus uses job titles that are
gender-neutral, but contain a stereotypical bias towards one gender (doctors and
CEOs are male, nurses and housekeepers female); to not conflate different types

9.5. What’s next? 161

of biases, we replace these titles by entity descriptions that are unambiguously
gendered (king, bride, father, etc.).

For every sentence, we create 4 different conditions, based on the gender of the
subject and object (FF, FM, MF, and MM). For instance, an example of an MF
sentence is: The father likes the woman because he/she. We sample 500 sentences
per condition.

9.4.3 Default reasoning for gender

For all sentences, we compute and compare the contributions of the male and
female nouns to the male and female pronouns. The results show that, like with
the singular/plural case, the model uses a default strategy to deal with pronoun
resolution. While the predictions of he primarily stem from the male nouns and the
predictions of she are causally related to the female noun, the female connection
is much stronger than the male connection. In other words, the model does not
need much evidence to predict a male pronoun, but it does require evidence to
predict a female pronoun. GCD reveals also the reason for this asymmetry, which
lies in the decoder intercepts of the model. These intercepts encode a strong male
preference, allowing the model to use this male prediction as a default, similar to
how singular verbs are predicted as a default baseline for number prediction.

9.4.4 Biases in society

It is easy imagine scenarios in which asymmetrical treatment of gender in models
used in society might prove problematic. Consider for instance the case in which
a model is used to automatically match jobs with resumes; An a priori imbalance
between male and female applicants would be highly undesirable.

Whether or not the solution of the model makes sense given how and on
what data it has been trained, the difference in treatment for male and female
referents was certainly not intended. The first step towards improving such issues
requires understanding what they are. With this study, we made a first step to
do so. Secondly, before we can start to improve such undesired biases, we have to
understand what in the model is responsible for them. In case of this particular
model, the bias seems to be encoded in the decoder intercepts, which might be
easily addressed. Much more research is required to understand how to create
models that are not unwantedly biased towards or against particular groups of
society, interpretability research will play an important role in this quest.

9.5 What’s next?

I have now briefly summarised the research described in this dissertation, mentioned
some related work and touched upon the societal implications of interpretability

162 Chapter 9. Discussion and conclusions

research. With this work, I believe to have confirmed that RNNs are in fact
interesting to consider as explanatory models of human processing. For me, that
means that this dissertation should not be seen as an endpoint, but rather as a
starting point for many interesting studies to come. Throughout the previous
sections, I already mentioned a few directions for future work, such as using
interpretability techniques to understand and then remove unwanted biases in
models. In this very last section, I would like to sketch two more paths I consider
promising for the future.

9.5.1 Improving interpretability techniques

One important component of this dissertation constituted the development and
evaluation of different types of interpretability techniques to further our under-
standing of neural networks. While I believe that I and the field have made
substantial progress in this respect, there are still many open questions regarding
the interpretability of neural networks. Such questions concern the faithfulness of
techniques – to what extent does the information they extract truly reflect the
underlying model behaviour; their computational complexity – how feasible is it to
apply techniques to larger corpora and different models; and their informativeness
– how useful is the information that they give us?

The different techniques I discussed in this dissertation score differently on these
different axes. Diagnostic classification is easily applicable and computationally
very feasible but requires clear hypotheses. Furthermore, it is not always easy
to establish that the diagnostic classifier extracts information that was also used
by the model. Neuron ablation does not have the latter problem but is generally
not applicable for processes that are encoded more distributedly than in just a
single neuron. GCD is both computationally feasible and directly related to the
underlying model, but also illustrates how many difficult choices and simplifications
need to be made to be able to track how information flows from particular input
words. The impact of some of these choices – such as the choice of interactions to
include and the influence of the choice of Shapley approximation technique – is
difficult to estimate, making it hard to determine the faithfulness of the results.

There are also many interpretability techniques that I did not use or discuss in
this thesis, such as layer-wise relevance propagation (LRP, Arras et al., 2017; Bach
et al., 2015) and singular vector canonical correlation analysis (SVCCA, Saphra
and Lopez, 2019b). While there is some work that systematically compares the
results and types of conclusions that can be drawn from some of these techniques
(e.g. Murdoch et al., 2018), much work in this area is still to be done.

9.5. What’s next? 163

9.5.2 Actually using RNNs as explanatory models of lan-
guage processing

One of the main goals I described in the beginning of this dissertation was to
understand if RNNs can be used as explanatory models of human language
processing. I what followed, I explored if the three requirements I formulated for
this to be possible were fulfilled. These studies led me to believe the are.

The work that I did as well as several other recent studies illustrate that RNNs
may not represent all we find interesting about structure, but that they do capture
many interesting aspects of it. Their performance on end-to-end tasks such as
language modelling further shows that they are perhaps not perfect, but definitely
adequate models of natural language. These positive results make them interesting
alternative models for how humans process natural language. The interpretability
techniques developed by me and others in the recent past allow us to investigate
how RNNs process these structural aspects and get sometimes even very precise
descriptions of the mechanisms that they use to do so. These findings can provide
us with new hypotheses for how language is processed by humans.

Psycholinguistic experiments

One way in which such hypotheses could be tested is by doing psycholinguistic
experiments. For instance, I described in Chapter 6 how LSTM language models
use an extremely local mechanism to represent long-distance number information,
while short-distance number information is represented in a more distributed
fashion. This finding generates very specific predictions about the type of contexts
in which interference of these two mechanisms might lead to mistakes, which can
then be tested on humans with behavioural experiments.

Similarly, our GCD study pointed out very specific default behaviour in a
pre-trained RNN model. How does this relate to known biases in the human
processing system? And can we perhaps restart using RNN models to help explain
their origins?5

Brain data

Another domain in which RNNs (as well as other types of neural models) may serve
as hypothesis generators is in the analysis of brain data. The first steps towards
the cross-pollination between modern computational linguistics and neuroscience
stem from already more than 10 years ago, when (Mitchell et al., 2008) presented
a study in which he used word representations from distributional semantics to
predict brain activations. More recently, several other groups investigated the
relation between representations from neural networks and brain activation data

5Concerning the relationship between connectionism and the existence of unbounded recursion
in natural language, I personally very much like the account of Christiansen and Chater (1999).

164 Chapter 9. Discussion and conclusions

(i.a Anderson et al., 2016; Huth et al., 2016; Wehbe et al., 2014; Abnar et al., 2018;
Jain and Huth, 2018), both on the word and sentence level. Many of these studies
focus on if there are potential links between model activations and brain data
or evaluate which type of model best predicts different types of brain data. A
complementary approach would be to instead use neural models to generate new
hypotheses about how the human brain may implement specific features and test
if similar mechanisms can be identified also in brain data. The results presented
in this dissertation lay the groundwork to further develop such a line of research.

Bibliography

Samira Abnar, Rasyan Ahmed, Max Mijnheer, and Willem Zuidema. Experiential,
distributional and dependency-based word embeddings have complementary
roles in decoding brain activity. In Proceedings of the 8th Workshop on Cognitive
Modeling and Computational Linguistics (CMCL 2018), pages 57–66, 2018.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg.
Fine-grained analysis of sentence embeddings using auxiliary prediction tasks.
In Proceedings of the 5th International Conference on Learning Representations
(ICLR), 2017.

Andrew James Anderson, Jeffrey R Binder, Leonardo Fernandino, Colin J
Humphries, Lisa L Conant, Mario Aguilar, Xixi Wang, Donias Doko, and
Rajeev DS Raizada. Predicting neural activity patterns associated with sen-
tences using a neurobiologically motivated model of semantic representation.
Cerebral Cortex, 27(9):4379–4395, 2016.

Jacob Andreas. Measuring compositionality in representation learning. In Inter-
national Conference on Learning Representations (ICLR), 2019.

Dana Angluin and Carl H Smith. Inductive inference: Theory and methods. ACM
Computing Surveys (CSUR), 15(3):237–269, 1983.

Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek.
Explaining recurrent neural network predictions in sentiment analysis. In
Proceedings of the 8th Workshop on Computational Approaches to Subjectivity,
Sentiment and Social Media Analysis (WASSA@EMNLP 2017), pages 159–168.
Association for Computational Linguistics, 2017.

Joris Baan, Jana Leible, Mitja Nikolaus, David Rau, Dennis Ulmer, Tim
Baumgärtner, Dieuwke Hupkes, and Elia Bruni. On the realization of com-
positionality in neural networks. In Proceedings of the 2019 ACL Workshop

165

166 BIBLIOGRAPHY

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
127–137, Florence, Italy, 2019. ACL.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10
(7):e0130140, 2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen,
Harm de Vries, and Aaron Courville. Systematic generalization: What is
required and can it be learned? In International Conference on Learning
Representations (ICLR), 2018.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. CoRR,
abs/1803.0127, 2018.

Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek Rei, and Anders Søgaard.
Sequence classification with human attention. In Proceedings of the 22nd
Conference on Computational Natural Language Learning, pages 302–312, 2018.

Joost Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela.
Jump to better conclusions: Scan both left and right. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 47–55, 2018.

John Batali. Artificial evolution of syntactic aptitude. In Proceedings from the
Sixteenth Annual Conference of the Cognitive Science Society, pages 27–32.
Lawrence Erlbaum Associates Hillsdale, NJ, 1994.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James R.
Glass. What do neural machine translation models learn about morphology? In
Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics, ACL 2017, Volume 1: Long Papers, pages 861–872. Association for
Computational Linguistics, 2017a.

Yonatan Belinkov, Llúıs Màrquez, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and
James Glass. Evaluating layers of representation in neural machine translation
on part-of-speech and semantic tagging tasks. In Proceedings of the Eighth
International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 1–10, 2017b.

BIBLIOGRAPHY 167

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James R.
Glass. On the linguistic representational power of neural machine translation
models. CoRR, abs/1911.00317, 2019.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. Deep RNNs encode soft
hierarchical syntax. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, volume 2, pages 14–19, 2018.

Ondrej Bojar, Christian Buck, Rajen Chatterjee, Christian Federmann, Yvette
Graham, Barry Haddow, Matthias Huck, Antonio Jimeno-Yepes, Philipp Koehn,
and Julia Kreutzer, editors. Proceedings of the Second Conference on Machine
Translation, WMT 2017, 2017. Association for Computational Linguistics.

Samuel R Bowman, Christopher D Manning, and Christopher Potts. Tree-
structured composition in neural networks without tree-structured architectures.
In Proceedings of the 2015th International Conference on Cognitive Computa-
tion: Integrating Neural and Symbolic Approaches-Volume 1583, pages 37–42.
CEUR-WS. org, 2015.

Rudolf Carnap. Meaning and necessity: a study in semantics and modal logic.
University of Chicago Press, 1947.

François Chollet et al. Keras. https://github.com/keras-team/keras, 2015.

Noam Chomsky. Three models for the description of language. IRE Transactions
on information theory, 2(3):113–124, 1956.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and
Yoshua Bengio. Attention-based models for speech recognition. In Advances in
neural information processing systems, pages 577–585, 2015.

Morten H Christiansen and Nick Chater. Toward a connectionist model of recursion
in human linguistic performance. Cognitive Science, 23(2):157–205, 1999.

Junyoung Chung, Caglar Gulehre, KyungHyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. CoRR,
abs/1412.3555, 2014.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau,
and James Glass. What is one grain of sand in the desert? analyzing individual
neurons in deep nlp models. In Proceedings of the AAAI Conference on Artificial
Intelligence AAAI. Honolulu, Hawaii, USA, 2019.

Misha Denil, Alban Demiraj, Nal Kalchbrenner, Phil Blunsom, and Nando de Fre-
itas. Modelling, visualising and summarising documents with a single convolu-
tional neural network. CoRR, abs/1406.3830, 2014.

168 BIBLIOGRAPHY

Roberto Dess̀ı and Marco Baroni. CNNs found to jump around more skillfully
than rnns: Compositional generalization in seq2seq convolutional networks. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics (ACL), Short Papers, pages 3919–3923, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

Jeffrey L Elman. Finding Structure in Time. Cognitive Science, 14(2):179–211,
1990.

Jeffrey L Elman. Distributed representations, simple recurrent networks, and
grammatical structure. Machine learning, 7(2-3):195–225, 1991.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik. Probing for semantic
evidence of composition by means of simple classification tasks. In Proceedings
of the 1st Workshop on Evaluating Vector-Space Representations for NLP,
RepEval@ACL 2016, Berlin, Germany, August 2016, pages 134–139. Association
for Computational Linguistics, 2016.

Jerry A Fodor and Zenon W Pylyshyn. Connectionism and Cognitive Archirecture:
A Critical Analysis. Cognition, 28(1-2):3–71, 1988.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Alona Fyshe, Gustavo Sudre, Leila Wehbe, Nicole Rafidi, and Tom M Mitchell.
The semantics of adjective noun phrases in the human brain. bioRxiv, page
089615, 2016.

Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin. A convolu-
tional encoder model for neural machine translation. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL), Long
Papers, volume 1, pages 123–135, 2017a.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning, (ICML), pages 1243–1252, 2017b.

Lieke Gelderloos and Grzegorz Chrupa la. From phonemes to images: levels
of representation in a recurrent neural model of visually-grounded language
learning. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages 1309–1319, 2016.

BIBLIOGRAPHY 169

Felix A Gers and Jürgen Schmidhuber. LSTM recurrent networks learn simple
context-free and context-sensitive languages. Neural Networks, IEEE Transac-
tions on, 12(6):1333–1340, 2001.

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem
Zuidema. Under the hood: Using diagnostic classifiers to investigate and improve
how language models track agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 240–248. ACL, 2018.

E Mark Gold et al. Language identification in the limit. Information and control,
10(5):447–474, 1967.

Yoav Goldberg. Assessing BERT’s syntactic abilities. CoRR, abs/1901.05287,
2019.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio.
An empirical investigation of catastrophic forgetting in gradient-based neural
networks. arXiv preprint arXiv:1312.6211, 2013.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco
Baroni. Colorless green recurrent networks dream hierarchically. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), volume 1, pages 1195–1205, 2018.

Xiaodong He and David Golub. Character-level question answering with attention.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1598–1607, 2016.

John Hewitt and Percy Liang. Designing and interpreting probes with control
tasks. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 2733–2743, Hong Kong, China,
November 2019. Association for Computational Linguistics.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax
in word representations. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), pages 4129–4138. Association for Computational Linguistics,
2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

170 BIBLIOGRAPHY

Dieuwke Hupkes and Willem Zuidema. Diagnostic classification and symbolic
guidance to understand and improve recurrent neural networks. In Proceedings
of Neural Information Processing Systems – Workshop track, 2017.

Dieuwke Hupkes and Willem Zuidema. Visualisation and ’diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure
(extended abstract). In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 5617–5621, 7 2018.

Dieuwke Hupkes, Sanne Bouwmeester, and Raquel Fernández. Analysing the
potential of seq-to-seq models for incremental interpretation in task-oriented
dialogue. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 165–174, Brussels, Belgium,
November 2018a. Association for Computational Linguistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and ‘diag-
nostic classifiers’ reveal how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelligence Research, 61:907–926,
2018b.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The composition-
ality of neural networks: integrating symbolism and connectionism. To appear
in Journal of Artificial Intelligence Research (JAIR), 2019a.

Dieuwke Hupkes, Diana Luna Rodriguez, Edoardo Ponti, and Bruni Elia. Internal
and external pressures on language emergence: Least effort, object constancy
and frequency. in prep, 2019b.

Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia Bruni.
Learning compositionally through attentive guidance. In International Confer-
ence on Computational Linguistics and Intelligent Text Processing (CICLing),
2019c.

Edmund Husserl. Logische Untersuchungen. Max Niemeyer, 1913.

Alexander G Huth, Tyler Lee, Shinji Nishimoto, Natalia Y Bilenko, An T Vu, and
Jack L Gallant. Decoding the semantic content of natural movies from human
brain activity. Frontiers in systems neuroscience, 10:81, 2016.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on
algorithmic probability. Springer Science & Business Media, 2004.

Pauline Jacobson. The (dis) organization of the grammar: 25 years. Linguistics
and Philosophy, 25(5):601–626, 2002.

BIBLIOGRAPHY 171

Shailee Jain and Alexander Huth. Incorporating context into language encoding
models for fmri. In Advances in Neural Information Processing Systems, pages
6628–6637, 2018.

Theo Janssen. Foundations and applications of Montague grammar. Mathematisch
Centrum, 1983.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. CLEVR: A diagnostic dataset for
compositional language and elementary visual reasoning. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1988–1997, 2017.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu.
Exploring the limits of language modeling. CoRR, abs/1602.02410, 2016.

Jaap Jumelet and Dieuwke Hupkes. Do language models understand anything? on
the ability of LSTMs to understand negative polarity items. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 222–231, 2018.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes. Analysing neural language
models: contextual decomposition reveals default reasoning in number and
gender assignment. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 1–11, 2019.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding
recurrent networks. In Proceedings of the International Conference on Learning
Representations 2016, pages 1–13, 2015.

Jean-Rémi King and Stanislas Dehaene. Characterizing the dynamics of mental
representations: the temporal generalization method. Trends in cognitive
sciences, 18(4):203–210, 2014.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
3rd International Conference on Learning Representations, ICLR 2015, pages
1–13, 2015.

Dan Klein and Christopher D. Manning. Corpus-based induction of syntactic
structure: Models of dependency and constituency. In Proceedings of the
42Nd Annual Meeting on Association for Computational Linguistics, ACL ’04.
Association for Computational Linguistics, 2004.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M.
Rush. Opennmt: Open-source toolkit for neural machine translation. In
Mohit Bansal and Heng Ji, editors, Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (ACL), System Demonstrations,
pages 67–72. Association for Computational Linguistics, 2017.

172 BIBLIOGRAPHY

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia Bruni. Transcoding com-
positionally: using attention to find more generalizable solutions. In Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, page 1–11, 2019.

Brenden Lake and Marco Baroni. Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In 35th
International Conference on Machine Learning, ICML 2018, pages 4487–4499.
International Machine Learning Society (IMLS), 2018.

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas
Dehaene, and Marco Baroni. The emergence of number and syntax units in
LSTM language models. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019.

Yongjie Lin, Yi Chern Tan, and Robert Frank. Open sesame: Getting inside
BERT’s linguistic knowledge. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
241–253, 2019.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of
lstms to learn syntax-sensitive dependencies. Transactions of the Association
for Computational Linguistics, 4:521–535, 2016.

Adam Lǐska, Germán Kruszewski, and Marco Baroni. Memorize or generalize?
searching for a compositional RNN in a haystack. CoRR, abs/1802.06467, 2018.

João Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar:
Testing compositional generalization in recurrent networks. In Proceedings of
the EMNLP Workshop: Analyzing and Interpreting Neural Networks for NLP,
pages 108–114, 2018.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations, pages 55–60, 2014.

Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T John
Rosen, Fei Xu, and Harald Clahsen. Overregularization in language acquisition.
Monographs of the society for research in child development, pages i–178, 1992.

David Marr. Vision: A computational investigation into the human representation
and processing of visual information. Phenomenology and the Cognitive Sciences,
8(4):397, 1982.

BIBLIOGRAPHY 173

Michael McCloskey and Neal J Cohen. Catastrophic interference in connection-
ist networks: The sequential learning problem. Psychology of learning and
motivation, 24:109–165, 1989.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carlson, Kai-Min Chang, Vi-
cente L Malave, Robert A Mason, and Marcel Adam Just. Predicting human
brain activity associated with the meanings of nouns. science, 320(5880):
1191–1195, 2008.

Mathijs Mul and Willem Zuidema. Siamese recurrent networks learn first-order
logic reasoning and exhibit zero-shot compositional generalization. CoRR,
abs/1906.00180, 2019.

W. James Murdoch, Peter J. Liu, and Bin Yu. Beyond word importance: Contex-
tual decomposition to extract interactions from lstms. In ICLR, 2018.

Matthew Nelson, Imen El Karoui, Kristof Giber, Xiaofang Yang, Laurent Cohen,
Hilda Koopman, Sydney Cash, Lionel Naccache, John Hale, Christophe Pallier,
and Stanislas Dehaene. Neurophysiological dynamics of phrase-structure building
during sentence processing. Proceedings of the National Academy of Sciences,
114(18):E3669–E3678, 2017.

Peter Pagin. Communication and strong compositionality. Journal of Philosophical
Logic, 32(3):287–322, 2003.

Peter Pagin and Dag Westerst̊ahl. Compositionality i: Definitions and variants.
Philosophy Compass, 5(3):250–264, 2010.

Barbara Partee. Lexical semantics and compositionality. An invitation to cognitive
science: Language, 1:311–360, 1995.

Martina Penke. The dual-mechanism debate. In The Oxford handbook of composi-
tionality. Oxford University Press, 2012.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,
1(8), 2019.

Alessandro Raganato and Jörg Tiedemann. An analysis of encoder representations
in transformer-based machine translation. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
pages 287–297, 2018.

J Rissanen. Modeling by shortest data description. Automatica, 14(5):465–658,
1978.

174 BIBLIOGRAPHY

Paul Rodriguez. Simple recurrent networks learn context-free and context-sensitive
languages by counting. Neural computation, 13(9):2093–118, 2001.

Paul Rodriguez, Janet Wiles, and Jeffrey L Elman. A recurrent neural network
that learns to count. Connection Science, 11(1):5–40, 1999.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. In David E. Rumelhart, editor, Parallel
distributed processing. MIT Pr., 1986.

Naomi Saphra and Adam Lopez. Do lstms learn compositionally? 2019a.

Naomi Saphra and Adam Lopez. Understanding learning dynamics of language
models with svcca. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 3257–3267, 2019b.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing
mathematical reasoning abilities of neural models. In International Conference
on Learning Representations (ICLR), 2019.

Lloyd S. Shapley. A value for n-person games. Contributions to the Theory of
Games, (28):307–317, 1953.

Xing Shi, Inkit Padhi, and Kevin Knight. Does string-based neural MT learn
source syntax? In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1526–1534, 2016.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of
neural nets. Journal of Computer and System Sciences, 50(1):132–150, 1995.

Chandan Singh, W James Murdoch, and Bin Yu. Hierarchical interpretations for
neural network predictions. In ICLR, 2019.

Paul Smolensky. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial intelligence, 46(1-2):
159–216, 1990.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 3104–3112. Curran Associates, Inc., 2014.

Zoltan Szabó. The case for compositionality. The Oxford handbook of composi-
tionality, 64:80, 2012.

BIBLIOGRAPHY 175

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical
NLP pipeline. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics (ACL), page 4593–4601, 2019a.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas
McCoy, Najoung Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan
Das, et al. What do you learn from context? Probing for sentence structure in
contextualized word representations. In Proceedings of the 7th International
Conference on Learning Representations (ICLR), 2019b.

Theano Development Team. Theano: A Python framework for fast computation
of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

Ke Tran, Arianna Bisazza, and Christof Monz. The importance of being recurrent
for modeling hierarchical structure. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 4731–4736, 2018.

Dennis Ulmer, Dieuwke Hupkes, and Elia Bruni. Assessing incrementality in
sequence-to-sequence models. In Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP (RepL4NLP-2019), pages 209–217, Florence, Italy,
August 2019. Association for Computational Linguistics.

Betty van Aken, Benjamin Winter, Alexander Löser, and Felix A. Gers. How does
bert answer questions?: A layer-wise analysis of transformer representations.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, CIKM ’19, pages 1823–1832. ACM, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

Sara Veldhoen. Semantic adequacy of compositional distributed representations.
Master’s thesis, University of Amsterdam, 2015.

Sara Veldhoen, Dieuwke Hupkes, and Willem Zuidema. Diagnostic classifiers:
Revealing how neural networks process hierarchical structure. In Pre-Proceedings
of the Workshop on Cognitive Computation: Integrating Neural and Symbolic
Approaches (CoCo @ NIPS 2016), 2016.

Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a trans-
former language model. Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pages 63–76, 2019.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Ana-
lyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned. In Proceedings of the 57th Annual Meeting of the Association

176 BIBLIOGRAPHY

for Computational Linguistics, pages 5797–5808. Association for Computational
Linguistics, 2019.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona Fyshe, Aaditya Ramdas,
and Tom Mitchell. Simultaneously uncovering the patterns of brain regions
involved in different story reading subprocesses. PloS one, 9(11):e112575, 2014.

Gail Weiss, Yoav Goldberg, and Eran Yahav. On the practical computational
power of finite precision rnns for language recognition. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 740–745, 2018.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. What do RNN
language models learn about filler–gap dependencies? In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 211–221, 2018.

Janet Wiles and Jeff Elman. Learning to count without a counter: A case study
of dynamics and activation landscapes in recurrent networks. In Proceedings of
the seventeenth annual conference of the cognitive science society, number s 482,
page 487. Erlbaum Hillsdale, NJ, 1995.

Thomas Wolf. Some additional experiments extending the tech report “assessing
BERT’s syntactic abilities” by yoav goldberg. Technical report, Technical report,
2019.

Wlodek Zadrozny. From compositional to systematic semantics. Linguistics and
philosophy, 17(4):329–342, 1994.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang.
Gender bias in coreference resolution: Evaluation and debiasing methods. In
Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 15–20, 2018.

List of my publications

Joris Baan, Jana Leible, Mitja Nikolaus, David Rau, Dennis Ulmer, Tim
Baumgärtner, Dieuwke Hupkes, and Elia Bruni. On the realization of com-
positionality in neural networks. In Proceedings of the 2019 ACL Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages
127–137, Florence, Italy, 2019. Association for Computational Linguistics. See
Chapter 8 of this book.

Mario Giulianelli, Jack Harding, Florian Mohnert, Dieuwke Hupkes, and Willem
Zuidema. Under the hood: Using diagnostic classifiers to investigate and improve
how language models track agreement information. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 240–248. Association for Computational Linguistics, 2018. See
Chapter 5 of this book.

Jaap Jumelet and Dieuwke Hupkes. Do language models understand anything?
on the ability of LSTMs to understand negative polarity items. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 222–231, 2018.

Jaap Jumelet, Willem Zuidema, and Dieuwke Hupkes. Analysing neural lan-
guage models: contextual decomposition reveals default reasoning in number
and gender assignment. In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 1–11, 2019. See Chapter 7 of this
dissertation.

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia Bruni. Transcoding
compositionally: using attention to find more generalizable solutions. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP, page 1–11, 2019.

Yair Lakretz, German Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas
Dehaene, and Marco Baroni. The emergence of number and syntax units in

177

178 LIST OF MY PUBLICATIONS

LSTM language models. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 2019. See Chapter
6 of this dissertation.

Dieuwke Hupkes and Willem Zuidema. Diagnostic classification and symbolic
guidance to understand and improve recurrent neural networks. In Proceedings
of Neural Information Processing Systems – Workshop track, 2017. See Chapter
3 of this dissertation.

Dieuwke Hupkes and Willem Zuidema. Visualisation and ’diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure
(extended abstract). In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 5617–5621. International
Joint Conferences on Artificial Intelligence Organization, 7 2018. See Chapter 3
of this dissertation.

Dieuwke Hupkes, Sanne Bouwmeester, and Raquel Fernández. Analysing the
potential of seq-to-seq models for incremental interpretation in task-oriented
dialogue. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 165–174, Brussels, Belgium,
November 2018a. Association for Computational Linguistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and
‘diagnostic classifiers’ reveal how recurrent and recursive neural networks process
hierarchical structure. Journal of Artificial Intelligence Research, 61:907–926,
2018b. See Chapter 3 of this dissertation.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The composi-
tionality of neural networks: integrating symbolism and connectionism. Journal
of Artificial Intelligence Research, 2019a. See Chapter 4 of this dissertation.

Dieuwke Hupkes, Diana Luna Rodriguez, Edoardo Ponti, and Bruni Elia. Inter-
nal and external pressures on language emergence: Least effort, object constancy
and frequency. in prep, 2019b.

Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia
Bruni. Learning compositionally through attentive guidance. In International
Conference on Computational Linguistics and Intelligent Text Processing (CI-
CLing), 2019c. See Chapter 8 of this dissertation.

Dennis Ulmer, Dieuwke Hupkes, and Elia Bruni. Assessing incrementality in
sequence-to-sequence models. In Proceedings of the 4th Workshop on Repre-
sentation Learning for NLP (RepL4NLP-2019), pages 209–217, Florence, Italy,
August 2019. Association for Computational Linguistics.

LIST OF MY PUBLICATIONS 179

Sara Veldhoen, Dieuwke Hupkes, and Willem Zuidema. Diagnostic classifiers:
Revealing how neural networks process hierarchical structure. In Pre-Proceedings
of the Workshop on Cognitive Computation: Integrating Neural and Symbolic
Approaches (CoCo @ NIPS 2016), 2016. See chapter 3 of this dissertation.

Samenvatting

Artificiële neurale netwerken zijn opmerkenswaardig goed geworden als modellen
voor verschillende natuurlijke taalverwerkingstaken. In dit proefschrift onderzoek
ik of dit soort modellen daardoor ook gebruikt kunnen worden om meer over
natuurlijke taal te leren. Ik focus specifiek op hiërarchische compositionaliteit in
recurrente neurale netwerken (RNN). Net zoals het menselijke taalverwerkingssys-
teem verwerken deze modellen binnenkomende signalen op een incrementele wijze,
hun temporele structuur in acht nemend. Ik stel twee vragen:

a) Zijn RNN modellen in staat om hiërarchisch compositionele structuren
correct te verwerken (gedragsmatige gelijkenis)?

b) Hoe kunnen we inzicht verkrijgen in de manier waarop ze dat doen
(interpreteerbaarheid van modellen)?

Ik behandel deze vragen in zes hoofdstukken, die onderverdeeld zijn in drie
delen. In deel één beschouw ik kunstmatige talen, wat mij in staat stelt om
de verwerking van talige structuren in isolatie te bestuderen. In dit gedeelte
introduceer ik ook diagnostische classificatie – een interpreteerbaarheidstechniek
die een belangrijke rol speelt in dit proefschrift – en bezin wat het voor een model
betekent om hiërarchische compositionaliteit te kunnen verwerken.

In deel twee bestudeer ik taalmodellen die getraind zijn op naturalistische data
(Engelse zinnen). Eerder onderzoek wees uit dat dit soort modellen in staat zijn
om syntaxgevoelige onderwerp-gezegde relaties te bevatten. Ik onderzoek hoe ze
dat doen. Ik presenteer een gedetailleerde analyse van de interne dynamiek van
modellen, waarvoor ik diagnostische classificatie, neuron ablatie en gegeneraliseerde
contextuele decompositie gebruik.

Ten slotte onderzoek ik in het laatste gedeelte van dit proefschrift of de
oplossing die een model vindt gestuurd kan worden door een aangepast leersignaal.
Ik gebruik de technieken die eerder in het proefschrift gëıntroduceerd zijn om de
impact van dit aangepaste leersignaal in kaart te brengen.

181

182 Samenvatting

Samenvattend presenteer ik in dit proefschrift verscheidene analyses die de
geschiktheid van RNN modellen aangaande hierarchische syntactische structuur
betreffen, evenals verschillende technieken die gebruikt kunnen worden om deze
moeilijk interpreerbare modellen te begrijpen. De resultaten schetsen een posi-
tief beeld, dat suggeert dat RNN modellen wel degelijk nuttig kunnen zijn als
verklarende modellen van natuurlijke taalverwerking.

Abstract

Artificial neural networks have become remarkably successful on many natural
language processing tasks. In this dissertation, I explore if these successes make
them useful as explanatory models of human language processing. I focus in
particular on hierarchical compositionality and recurrent neural networks (RNNs),
which share with the human processing system the property that they process
language temporally and incrementally. I consider two questions:

i) Are RNNs in fact capable of processing hierarchical compositional structures
(behavioural similarity)?

ii) How can we obtain insight in how they do so (model interpretability)?

I address these questions in six chapters, divided into three parts. In part 1,
I consider artificial languages, which provide a clean setup in which processing
of structure can be studied in isolation. In this part, I also introduce diagnostic
classification – an interpretability technique that plays an important role in this
dissertation – and reflect upon what it means for a model to be able to process
hierarchical compositionality.

In part two, I consider language models trained on naturalistic data (English
sentences). Such models have been shown to capture syntax-sensitive long-distance
subject-verb relationships. I investigate how they do so. I present detailed
analyses of their inner dynamics, using diagnostic classification, neuron ablation
and generalised contextual decomposition.

Lastly, in the final part of this dissertation, I consider if a model’s solution can
be changed through an adapted learning signal. I use several of the previously
introduced techniques to analyse the impact of adding this learning signal.

In summary, In this dissertation I present many different analyses concerning
the abilities of RNNs to process hierarchical structure, as well as several techniques
to open these blackbox models. Overall, the results sketch a positive picture of
the usefulness of such models as explanatory models of processing languages with
hierarchical compositional semantics.

183

Titles in the ILLC Dissertation Series:

ILLC DS-2009-01: Jakub Szymanik
Quantifiers in TIME and SPACE. Computational Complexity of Generalized
Quantifiers in Natural Language

ILLC DS-2009-02: Hartmut Fitz
Neural Syntax

ILLC DS-2009-03: Brian Thomas Semmes
A Game for the Borel Functions

ILLC DS-2009-04: Sara L. Uckelman
Modalities in Medieval Logic

ILLC DS-2009-05: Andreas Witzel
Knowledge and Games: Theory and Implementation

ILLC DS-2009-06: Chantal Bax
Subjectivity after Wittgenstein. Wittgenstein’s embodied and embedded subject
and the debate about the death of man.

ILLC DS-2009-07: Kata Balogh
Theme with Variations. A Context-based Analysis of Focus

ILLC DS-2009-08: Tomohiro Hoshi
Epistemic Dynamics and Protocol Information

ILLC DS-2009-09: Olivia Ladinig
Temporal expectations and their violations

ILLC DS-2009-10: Tikitu de Jager
”Now that you mention it, I wonder...”: Awareness, Attention, Assumption

ILLC DS-2009-11: Michael Franke
Signal to Act: Game Theory in Pragmatics

ILLC DS-2009-12: Joel Uckelman
More Than the Sum of Its Parts: Compact Preference Representation Over
Combinatorial Domains

ILLC DS-2009-13: Stefan Bold
Cardinals as Ultrapowers. A Canonical Measure Analysis under the Axiom of
Determinacy.

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2010-12: Martin Mose Bentzen
Stit, Iit, and Deontic Logic for Action Types

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn
The neural basis of structure in language

ILLC DS-2012-01: Federico Sangati
Decomposing and Regenerating Syntactic Trees

ILLC DS-2012-02: Markos Mylonakis
Learning the Latent Structure of Translation

ILLC DS-2012-03: Edgar José Andrade Lotero
Models of Language: Towards a practice-based account of information in
natural language

ILLC DS-2012-04: Yurii Khomskii
Regularity Properties and Definability in the Real Number Continuum: idealized
forcing, polarized partitions, Hausdorff gaps and mad families in the projective
hierarchy.

ILLC DS-2012-05: David Garćıa Soriano
Query-Efficient Computation in Property Testing and Learning Theory

ILLC DS-2012-06: Dimitris Gakis
Contextual Metaphilosophy - The Case of Wittgenstein

ILLC DS-2012-07: Pietro Galliani
The Dynamics of Imperfect Information

ILLC DS-2012-08: Umberto Grandi
Binary Aggregation with Integrity Constraints

ILLC DS-2012-09: Wesley Halcrow Holliday
Knowing What Follows: Epistemic Closure and Epistemic Logic

ILLC DS-2012-10: Jeremy Meyers
Locations, Bodies, and Sets: A model theoretic investigation into nominalistic
mereologies

ILLC DS-2012-11: Floor Sietsma
Logics of Communication and Knowledge

ILLC DS-2012-12: Joris Dormans
Engineering emergence: applied theory for game design

ILLC DS-2013-01: Simon Pauw
Size Matters: Grounding Quantifiers in Spatial Perception

ILLC DS-2013-02: Virginie Fiutek
Playing with Knowledge and Belief

ILLC DS-2013-03: Giannicola Scarpa
Quantum entanglement in non-local games, graph parameters and zero-error
information theory

ILLC DS-2014-01: Machiel Keestra
Sculpting the Space of Actions. Explaining Human Action by Integrating
Intentions and Mechanisms

ILLC DS-2014-02: Thomas Icard
The Algorithmic Mind: A Study of Inference in Action

ILLC DS-2014-03: Harald A. Bastiaanse
Very, Many, Small, Penguins

ILLC DS-2014-04: Ben Rodenhäuser
A Matter of Trust: Dynamic Attitudes in Epistemic Logic

ILLC DS-2015-01: Maŕıa Inés Crespo
Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and
Cognitive Science

ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

ILLC DS-2015-05: Facundo Carreiro
Fragments of Fixpoint Logics: Automata and Expressiveness

ILLC DS-2016-01: Ivano A. Ciardelli
Questions in Logic

ILLC DS-2016-02: Zoé Christoff
Dynamic Logics of Networks: Information Flow and the Spread of Opinion

ILLC DS-2016-03: Fleur Leonie Bouwer
What do we need to hear a beat? The influence of attention, musical abilities,
and accents on the perception of metrical rhythm

ILLC DS-2016-04: Johannes Marti
Interpreting Linguistic Behavior with Possible World Models

ILLC DS-2016-05: Phong Lê
Learning Vector Representations for Sentences - The Recursive Deep Learning
Approach

ILLC DS-2016-06: Gideon Maillette de Buy Wenniger
Aligning the Foundations of Hierarchical Statistical Machine Translation

ILLC DS-2016-07: Andreas van Cranenburgh
Rich Statistical Parsing and Literary Language

ILLC DS-2016-08: Florian Speelman
Position-based Quantum Cryptography and Catalytic Computation

ILLC DS-2016-09: Teresa Piovesan
Quantum entanglement: insights via graph parameters and conic optimization

ILLC DS-2016-10: Paula Henk
Nonstandard Provability for Peano Arithmetic. A Modal Perspective

ILLC DS-2017-01: Paolo Galeazzi
Play Without Regret

ILLC DS-2017-02: Riccardo Pinosio
The Logic of Kant’s Temporal Continuum

ILLC DS-2017-03: Matthijs Westera
Exhaustivity and intonation: a unified theory

ILLC DS-2017-04: Giovanni Cinà
Categories for the working modal logician

ILLC DS-2017-05: Shane Noah Steinert-Threlkeld
Communication and Computation: New Questions About Compositionality

ILLC DS-2017-06: Peter Hawke
The Problem of Epistemic Relevance

ILLC DS-2017-07: Aybüke Özgün
Evidence in Epistemic Logic: A Topological Perspective

ILLC DS-2017-08: Raquel Garrido Alhama
Computational Modelling of Artificial Language Learning: Retention, Recogni-
tion & Recurrence

ILLC DS-2017-09: Miloš Stanojević
Permutation Forests for Modeling Word Order in Machine Translation

ILLC DS-2018-01: Berit Janssen
Retained or Lost in Transmission? Analyzing and Predicting Stability in Dutch
Folk Songs

ILLC DS-2018-02: Hugo Huurdeman
Supporting the Complex Dynamics of the Information Seeking Process

ILLC DS-2018-03: Corina Koolen
Reading beyond the female: The relationship between perception of author
gender and literary quality

ILLC DS-2018-04: Jelle Bruineberg
Anticipating Affordances: Intentionality in self-organizing brain-body-environment
systems

ILLC DS-2018-05: Joachim Daiber
Typologically Robust Statistical Machine Translation: Understanding and Ex-
ploiting Differences and Similarities Between Languages in Machine Transla-
tion

ILLC DS-2018-06: Thomas Brochhagen
Signaling under Uncertainty

ILLC DS-2018-07: Julian Schlöder
Assertion and Rejection

ILLC DS-2018-08: Srinivasan Arunachalam
Quantum Algorithms and Learning Theory

ILLC DS-2018-09: Hugo de Holanda Cunha Nobrega
Games for functions: Baire classes, Weihrauch degrees, transfinite computa-
tions, and ranks

ILLC DS-2018-10: Chenwei Shi
Reason to Believe

ILLC DS-2018-11: Malvin Gattinger
New Directions in Model Checking Dynamic Epistemic Logic

ILLC DS-2018-12: Julia Ilin
Filtration Revisited: Lattices of Stable Non-Classical Logics

ILLC DS-2018-13: Jeroen Zuiddam
Algebraic complexity, asymptotic spectra and entanglement polytopes

ILLC DS-2019-01: Carlos Vaquero
What Makes A Performer Unique? Idiosyncrasies and commonalities in ex-
pressive music performance

ILLC DS-2019-02: Jort Bergfeld
Quantum logics for expressing and proving the correctness of quantum programs

ILLC DS-2019-03: András Gilyén
Quantum Singular Value Transformation & Its Algorithmic Applications

ILLC DS-2019-04: Lorenzo Galeotti
The theory of the generalised real numbers and other topics in logic

ILLC DS-2019-05: Nadine Theiler
Taking a unified perspective: Resolutions and highlighting in the semantics of
attitudes and particles

ILLC DS-2019-06: Peter T.S. van der Gulik
Considerations in Evolutionary Biochemistry

ILLC DS-2019-07: Frederik Möllerström Lauridsen
Cuts and Completions: Algebraic aspects of structural proof theory

ILLC DS-2020-01: Mostafa Dehghani
Learning with Imperfect Supervision for Language Understanding

ILLC DS-2020-02: Koen Groenland
Quantum protocols for few-qubit devices

ILLC DS-2020-03: Jouke Witteveen
Parameterized Analysis of Complexity

ILLC DS-2020-04: Joran van Apeldoorn
A Quantum View on Convex Optimization

ILLC DS-2020-05: Tom Bannink
Quantum and stochastic processes

