Learning compositionally through attentive guidance

Dieuwke Hupkes

Institute for Logic, Language and Computation University of Amsterdam

June 12, 2018

Dieuwke Hupkes Learning compositionally through attentive guidance

Structures in language

Neural networks

Neural networks and natural language processing

Understanding neural networks Attentive Guidance Discussion References

Successes Downsides What to do?

The successes of neural networks

They work very well:

- Machine translation
- Syntactic parsing
- Semantic role labelling
- Language modelling

Downsides

The downside of neural networks

Dieuwke Hupkes Learning compositionally through attentive guidance

Successes Downsides What to do?

The downside of neural networks

- They are not useful as explanatory models of language
- We don't know how they relate to linguistic theories of language
- We don't know how to improve them (other than by applying engineering tricks)

Successes Downsides What to do?

The downside of neural networks

- They are not useful as explanatory models of language
- We don't know how they relate to linguistic theories of language
- We don't know how to improve them (other than by applying engineering tricks)
- Actually, we don't even have any idea what they encode

Neural networks and natural language processing

Understanding neural networks Attentive Guidance Discussion References Successes Downsides What to do?

What do we do?

- We wait for the engineers to solve it
- We try to increase our understanding of what these networks are encoding
- We try to find new ways to make them behave more human-like

Linguistically Structurally Rehaviourally

Behaviourally Behaviourally

_ookup tables

Linguistically

Linguistically Structurally Behaviourally Behaviourally

_ookup tables

Structurally

Linguistically Structurally Behaviourally Behaviourally

Lookup tables

On a behaviour level

jump	
jump left	
jump around right	
turn left twice	
jump thrice	
jump opposite left and walk thrice	
jump opposite left after walk around left	

- \Rightarrow JUMP
- \Rightarrow LTURN JUMP
- \Rightarrow RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP
- ⇒ LTURN LTURN
- \Rightarrow JUMP JUMP JUMP
- ⇒ LTURN LTURN JUMP WALK WALK WALK
- $\Rightarrow~$ LTURN WALK LTURN WALK LTURN WALK LTURN UTURN JUMP

Figure 1: Examples of SCAN commands (left) and the corresponding action sequences (right).

Lake and Baroni (2017)

Linguistically Structurally Behaviourally Behaviourally

ookup tables

Behaviourally

Dieuwke Hupkes Learning compositionally through attentive guidance

Linguistically Structurally Behaviourally Behaviourally

ookup tables

- Networks can pick up on interesting (hierarchical) patterns
- We have some methods to look inside networks
- Networks are powerfull generalisation machines
- But: they don't do this in a human understandable way

_ookup tables

Pattern matching goes a long way

Dieuwke Hupkes Learning compositionally through attentive guidance

Liška et al. (2018)

Linguistically Structurally Behaviourally Behaviourally

Lookup tables

Experimental setup

- Data: 8 randomly generated 3-bit atomic tasks and corresponding 64 composed tasks.
- Training on all atomic tasks and 6 out 8 inputs of composed tasks, and test on 2 held-out inputs (totaling 128 test compositions).

	t ₁	t ₂	t ₈
	000->101	000->001	
	001->110	001->101	
	010→000	010->010	
	011->011	011→111	
	100->100	100->000	→
	101-+111	101->100	
	110->001	110->011	→
	111->010	111->110	
Training		$t_2 \circ t_1$	t ₈ ∘ t ₈
	000→101	∽ ~000→001	→
	001→110	▼ 7 001→101	
	010→000	→//>010→010	→
	011->011	→ 011→111	→
	100→100		→
	101->111	-√/\>101→100	→
Testing	110→001	∕ \ \110→011	→
lesting	111-+010		··· →

Linguistically Structurally Behaviourally Behaviourally

Lookup tables

How do neural networks do?

Linguistically Structurally Behaviourally Behaviourally

Lookup tables

- Some RNNs find a generalising solution
- Ø Most networks do not exhibit systematic compositionality

Neural networks and natural language processing Understanding neural networks

Attentive Guidance

Discussion References

Attentive Guidance

Intuition and implementation Implementation Lookup tables Symbol Rewriting

Hupkes et al. (2018a)

Dieuwke Hupkes Learning compositionally through attentive guidance

Neural networks and natural language processing Understanding neural networks

Attentive Guidance

Discussion References

Attentive Guidance

Intuition and implementation Implementation Lookup tables Symbol Rewriting

Hupkes et al. (2018a)

An important part of the training will consist in the teacher's pointing to the objects, directing the child's attention to them, and at the same time uttering a word; for instance, the word "slab" as he points to that shape.

Philosophical Investigations

L. Wittgenstein

a networks Intuition and implementation e Guidance Lookup tables Discussion Symbol Rewriting

Intuition

Supervise the attention mask of the network to match a compositional readout of the input.

> Discussion References

Intuition and implementation Implementation Lookup tables Symbol Rewriting

Discussion References

Data

• Training 6 out of 8 inputs in 28 compositions unseen: t₁ t₂ 110

Lookup tables

- Heldout inputs 2 out of 8 inputs in 28 compositions unseen: e.g. $t_1 t_2 010$
- Heldout compositions 8 entirely unseen compositions: t₁ t₃
- **Heldout tables** compositions with one of the two heldout tables: e.g. $t_7 t_1 000$
- **New compositions** compositions between the two heldout tables: e.g. *t*₇ *t*₈ 000

Neural networks and natural language processing Understanding neural networks

Attentive Guidance

Discussion References Intuition and implementation Implementation Lookup tables Symbol Rewriting

Accuracies

Neural networks and natural language processing Understanding neural networks

Attentive Guidance

Discussion References Intuition and implementation Implementation Lookup tables Symbol Rewriting

Overfitting

Dieuwke Hupkes Learning compositionally through attentive guidance

$$\begin{aligned} \mathcal{L} &: X = \{A, B\}, \\ Y_A &= \{a_1, a_2, a_3\}, Y_B = \{b_1, b_2, b_3\}. \\ a_1 &\to a_{11} | a_{12}, \ a_2 \to a_{21} | a_{22}, \ a_3 \to a_{31} | a_{32} \\ b_1 \to b_{11} | b_{12}, \ b_2 \to b_{21} | b_{22}, \ b_3 \to b_{31} | b_{32} \end{aligned}$$

Input Valid output for \mathcal{L} AAB $a_{21}a_{32}a_{12}a_{11}a_{22}a_{32}b_{13}b_{21}b_{32}$

Weber et al (2018)

Discussion References

Results

Intuition and implementation Implementation Lookup tables Symbol Rewriting

• Relaxing the need of guidance

What's next?

• Relaxing the need of guidance

Picture of Mathijs Mul

- Relaxing the need of guidance
- Designing architectures that have compositional biases built in

- Relaxing the need of guidance
- Designing architectures that have compositional biases built in
- Finding other tasks: What would be a convincing proof of compositionality?

Acknowledgments

Anand Kumar Singh

Kris Korrel

Elia Bruni

Germàn Kruszewski

Bibliography

- Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. Colorless green recurrent networks dream hierarchically. In *Proceedings of NAACL*, volume 1, pages 1195–1205, 2018.
- Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia Bruni. Learning compositionally through attentive guidance, 2018a.
- Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure. *Journal of Artificial Intelligence Research*, 61:907–926, 2018b.
- Brenden M. Lake and Marco Baroni. Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks. *CoRR*, abs/1711.00350, 2017.
- Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a compositional rnn in a haystack. *arXiv preprint arXiv:1802.06467*, 2018.