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Recurrent neural networks are not good at finding
systematic/compositional solutions to problems, like
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= Compositionality is difficult to (directly) evaluate

= Neural networks are black boxes



Arithmetic Language

Name #digits Example
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L5R
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1
2
3

5

minus three
( five plus seven )
( three - ( one + minus two ) )

( ( ¢ ( nine + six) + seven ) + five ) - seven )
( eight + ( six- ( two - ( ten + nine ) ) ) )
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Deep Hierarchical Structure
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How do we study the network?
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Diagnostic Classification
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Diagnostic Classification
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mean squared error
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Critical notes

How do you know diagnostic classifiers don't just pick up noise?
(or: shouldn’t you use more complicated diagnostic models?)
What do you do when you don’t have a symbolic hypothesis?

How does this knowledge help us?



Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Linzen et al., (2016); Gulordava et al., (2018)
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Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Accuracy Accuracy
with intervention
Original 78.1 85.4
Nonce 70.7 75.6

Hupkes et al (2018), in prep
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mean absolute error

Results
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Hypotheses
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Using diagnostic classifier weights
What happens where?

...... Majority classifier . _________.
Minority cl
0o 1 2 3 4 5 6 7

Prediction of minus_scopei+ by individual hidden layer units
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