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Compositional solutions in Recurrent Neural Networks

Recurrent neural networks are not good at finding
systematic/compositional solutions to problems, like

humans

• Compositionality is difficult to (directly) evaluate
• Neural networks are black boxes
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Arithmetic Language

Name #digits Example
L1 1 minus three
L2 2 ( five plus seven )
L3 3 ( three - ( one + minus two ) )
. . .
L5R 5 ( ( ( ( nine + six) + seven ) + five ) - seven )
L5L 5 ( eight + ( six- ( two - ( ten + nine ) ) ) )



Arithmetic Language
Deep Hierarchical Structure
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How do we study the network?



Diagnostic Classification



Diagnostic Classification



Recursive or cumulative?



Critical notes

• How do you know diagnostic classifiers don’t just pick up noise?
• (or: shouldn’t you use more complicated diagnostic models?)
• What do you do when you don’t have a symbolic hypothesis?
• How does this knowledge help us?



Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Linzen et al., (2016); Gulordava et al., (2018)
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Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Accuracy Accuracy
with intervention

Original 78.1 85.4
Nonce 70.7 75.6

Hupkes et al (2018), in prep
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Hypotheses
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Using diagnostic classifier weights
What happens where?
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