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Symbolic structure and the brain

?

But our brains do not have any explicit means to represent rules and
symbols, so how is language represented?
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Recurrent Neural Networks
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Simple Recurrent Network

(Elman 1990)
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Gated recurrent neural networks

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks
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Gated recurrent neural networks

How can hierarchical compositionality be processed
incrementally, in linear time, by a recurrent artificial neural
network?
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This talk
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Two questions

1 Can recurrent neural networks represent hierarchical structure?

In a clean setting, using artificial languages
In a noisy setting, dealing with natural language

2 How do we understand if and how they can?

Based on their behaviour
Based on their representations
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Artificial Language
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Arithmetic Language

(Veldhoen, Hupkes, and Zuidema 2016; Hupkes, Veldhoen, and Zuidema
2018)
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Arithmetic Language

(Veldhoen, Hupkes, and Zuidema 2016; Hupkes, Veldhoen, and Zuidema
2018)
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Can a gated recurrent network learn this language?
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Looking inside

What does the network do?
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Looking inside
Plotting activation values
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Looking inside
Update gate

(Karpathy, Johnson, and Fei-Fei 2015)
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Symbolic solutions
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Symbolic solutions
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Diagnostic Classifier
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Diagnostic Classifier
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Intermediate results
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Cumulative strategy, operation mode
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Discussion

Some intermediate conclusions:
GRU models seem fairly able to compute the meaning of sequences
with hierarchical structure
With diagnostic classification we can narrow down which strategy they
are following
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Discussion

Some other possibilities:
Further fine-grained analysis of the strategy models are using, and
comparison with other recurrent cells (Hupkes, Veldhoen, and Zuidema
2018)
Understand by masking DC weights whether information is represented
in a distributive or local way (Hupkes and Zuidema 2017)
Locating important neurons (Lakretz et al. 2019)
Changing the behaviour of models (Giulianelli et al. 2018)
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Natural Language
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Language Modelling

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019 21 / 50



Subject-verb agreement

The scientist who wrote the research paper jumps with joy
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The number agreement task

The scientist who wrote the research paper . . .

(Linzen, Dupoux, and Goldberg 2016)
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Results

(Gulordava et al. 2018)
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Results 2

(Gulordava et al. 2018)
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Other linguistic questions

Negative polarity items (Jumelet and Hupkes 2018; Marvin and Linzen
2018)

Filler-gap dependencies (Wilcox et al. 2018; Wilcox et al. 2019)
Reflexive anaphora (Marvin and Linzen 2018; Futrell et al. 2018)
Garden path sentences (Futrell et al. 2018; Van Schijndel and Linzen
2018; Futrell et al. 2019)
And many more. . .
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But how do they do this?
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Diagnostic classification 2
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Diagnostic Classification
Sentences with correct predictions, h

(Giulianelli et al. 2018)
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Diagnostic Classification
All sentences, h

(Giulianelli et al. 2018)
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Diagnostic Classification
All sentences, all components

(Giulianelli et al. 2018)
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Temporal generalisation matrix

(Giulianelli et al. 2018)
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Other techniques

What else can we do?
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Ablation studies

A designated singular and plural unit
encode numerosity over long distances
For shorter distances, this is encoded
in a more distributed fashion

(Lakretz et al. 2019)
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Ablation studies

Lakretz et al. 2019
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Contextual Decomposition

(Jumelet, Hupkes, and Zuidema 2019)
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Conclusions
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Conclusions

We can study black box neural networks with behavioural experiments

But we have also quite some techniques available to study their
representations

Diagnostic Classification
Ablation studies
Contextual Decomposition
Some others I didn’t discuss

Neural networks seem quite capable of modelling hierarchical structure,
even if the data they deal with is messy

I’m looking forward to the next step(s): reconnecting all these findings
with human language!
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Interventions
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Diagnostic interventions
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Diagnostic interventions

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019 46 / 50



Diagnostic interventions, results
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Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Accuracy Accuracy
with intervention

Original 78.1 85.4
Nonce 70.7 75.6

(Giulianelli et al. 2018)
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Gated Recurrent Neural Networks
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Simple Recurrent Network

ht = tanh(Wxt + Uht−1 + b)

(Elman 1990)
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Gated recurrent neural networks

ht = tanh(Wxt + Uht−1 + b)

rt = σ(Wrxt + Urht−1 + br)

r

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

h̃t = tanh(Wxt + U(r � ht−1) + b)

rt = σ(Wrxt + Urht−1 + br)
h̃

r

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

h̃t = tanh(Wxt + U(r � ht−1) + b)

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)
z

h̃
r

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

h̃t = tanh(Wxt + U(r � ht−1) + b)

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

ht = (1 − zt) � ht−1 + zt � h̃t

z
h̃

r

(Cho et al. 2014; Chung et al. 2015)
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