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Symbolic structure and the brain
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Symbolic structure and the brain
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The scientist who wrote the research paper Jumped with joy

@ But our brains do not have any explicit means to represent rules and
symbols, so how is language represented?
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Recurrent Neural Networks

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019



Simple Recurrent Network
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Gated recurrent neural networks
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Gated recurrent neural networks
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Gated recurrent neural networks

e How can hierarchical compositionality be processed
incrementally, in linear time, by a recurrent artificial neural
network?
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This talk
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Two questions

@ Can recurrent neural networks represent hierarchical structure?
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@ Can recurrent neural networks represent hierarchical structure?

e In a clean setting, using artificial languages
e In a noisy setting, dealing with natural language

© How do we understand if and how they can?

o Based on their behaviour
o Based on their representations
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Artificial Language

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019



Arithmetic Language

( ( Five minus two ) plus six )

( five minus ( two plus six ) )

(Veldhoen, Hupkes, and Zuidema 2016; Hupkes, Veldhoen, and Zuidema
2018)
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Can a gated recurrent network learn this language?
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Can a gated recurrent network learn this language?
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Looking inside

What does the network do?
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Looking inside
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Looking inside

Update gate

fraction left saturated
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Symbolic solutions

( Five minus ( two plus six ))
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Symbolic solutions
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Symbolic solutions
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Symbolic solutions
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Symbolic solutions
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Symbolic solutions
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Diagnostic Classifier
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Diagnostic Classifier
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Diagnostic Classifier
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Intermediate results
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Cumulative strategy, operation mode
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Discussion

Some intermediate conclusions:

@ GRU models seem fairly able to compute the meaning of sequences
with hierarchical structure

@ With diagnostic classification we can narrow down which strategy they
are following
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Discussion

Some other possibilities:

@ Further fine-grained analysis of the strategy models are using, and
comparison with other recurrent cells (Hupkes, Veldhoen, and Zuidema
2018)

@ Understand by masking DC weights whether information is represented
in a distributive or local way (Hupkes and Zuidema 2017)

@ Locating important neurons (Lakretz et al. 2019)

e Changing the behaviour of models (Giulianelli et al. 2018)
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Natural Language
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Language Modelling
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Subject-verb agreement

The scientist who wrote the research paper jumps with joy
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Subject-verb agreement

The scientist who wrote the research paper jumps with joy

The scientists who wrote the research paper jump with joy
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The number agreement task

The scientist who wrote the research paper ...

(Linzen, Dupoux, and Goldberg 2016)

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019



00 g
" s _-:"‘.-\-\._'h__\-
e e
Ch iy T
&
a &0
E
==
H ¥ .
o T
*
60 ]
]

1 k!
Mumber ui? attractors

(Gulordava et al. 2018)

Dieuwke Hupkes (ILLC)

Modeals

= Linzen's Google LM
= Linzen's supervised
=Our L5TM LM
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BHuman subjects mMLSTM
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Other linguistic questions

o Negative polarity items (Jumelet and Hupkes 2018; Marvin and Linzen
2018)
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Other linguistic questions

Negative polarity items (Jumelet and Hupkes 2018; Marvin and Linzen
2018)

Filler-gap dependencies (Wilcox et al. 2018; Wilcox et al. 2019)
Reflexive anaphora (Marvin and Linzen 2018; Futrell et al. 2018)

Garden path sentences (Futrell et al. 2018; Van Schijndel and Linzen
2018; Futrell et al. 2019)

And many more. ..

But how do they do this?
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Diagnostic classification 2
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Diagnostic Classification

Sentences with correct predictions, h
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Diagnostic Classification

All sentences, h
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Diagnostic Classification

All sentences, all components

(Giulianelli et al. 2018)
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Temporal generalisation matrix
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Other techniques

What else can we do?
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Ablation studies

Ablated
NA task C 776 1 988 Full
Simple S - - 100
Adv s -] - [100
2Adv S -] - |99
CoAdv S| - | 8 |987
namePP SS - - 99.3
nounPP SS - - 99.2
nounPP spll - |sa2]872 @ A designated singular and plural unit
nounPPAdv | SS i - | - | 995 encode numerosity over long distances
nounPPAdv SP - 5401 91.2
Simple P - - [100 @ For shorter distances, this is encoded
f:dvv ﬁ o 332 in a more distributed fashion
CoAdv P | 792 - 99.3
namePP PS | 39.9| - 68.9
nounPP PS || 48.0| - 92.0
nounPP PP | 783 | - 99.0
nounPPAdv PS| 63.7| - 99.2
nounPPAdv PP - - 99.8
Linzen - 753 - 93.9

(Lakretz et al. 2019)
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Ablation studies
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Lakretz et al. 2019
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Contextual Decomposition

Predicted class
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(Jumelet, Hupkes, and Zuidema 2019)

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019



Conclusions
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Conclusions
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@ But we have also quite some techniques available to study their
representations

o Diagnostic Classification

e Ablation studies

o Contextual Decomposition
e Some others | didn't discuss
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Conclusions

@ We can study black box neural networks with behavioural experiments

@ But we have also quite some techniques available to study their
representations

Diagnostic Classification

Ablation studies

Contextual Decomposition

Some others | didn't discuss

@ Neural networks seem quite capable of modelling hierarchical structure,
even if the data they deal with is messy
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Conclusions

@ We can study black box neural networks with behavioural experiments

@ But we have also quite some techniques available to study their
representations

Diagnostic Classification

Ablation studies

Contextual Decomposition

Some others | didn't discuss

@ Neural networks seem quite capable of modelling hierarchical structure,
even if the data they deal with is messy

@ I'm looking forward to the next step(s): reconnecting all these findings
with human language!
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Interventions
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Diagnostic interventions
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Diagnostic interventions
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Diagnostic interventions, results

An official estimate issued in 2003 suggests | suggest
Original -11.05 -8.426 -8.472  -1.243 -3.951 | -5.753 -5.6979
Intervention -11.05  -8.426 -8.472 -1.268 -3.97 | -5.691 -6.4361
without with
intervention | intervention
DC 780 | 854

Dieuwke Hupkes (ILLC) Computational Cognition October 1, 2019



Subject-verb agreement in Language Models

The keys to the kabinet left of the door ( are / is ) on the table.

Accuracy Accuracy
with intervention
Original 78.1 85.4
Nonce 70.7 75.6

(Giulianelli et al. 2018)
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Gated Recurrent Neural Networks
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Simple Recurrent Network

h; = tanh(Wxt + Uhy_1 + b)

(Elman 1990)
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Gated recurrent neural networks

QUTPUT UNITS

ht = tanh(WXt + Uh¢_1 + b)

[ - 1 HIDDEN UNITS
ry = O'(WTXt + Urht,1 + br) ‘.‘\\‘
:'4 ‘\
I L I I ~~~~~~~~ I \\\\\\\\\\\\\\\\\\ “
INPUT UNITS CONTEXT UNITS

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

QUTPUT UNITS

h; = tanh(Wx; + U(r ® hy_;) + b)

— | HIDDEN UNITS

ry =o0(W,x¢+ U,h;1 +b,;) "\

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

QUTPUT UNITS

h; = tanh(Wx; + U(r ® hy_;) + b)

rt — O'(WrXt + Urhtfl + br) [— | HIDDEN UNITS
VAAA ‘;'l:,\,‘,‘.ZZIZiZIZI"
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(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

QUTPUT UNITS

flt = tanh(Wxt + U(I‘ ® htfl) + b)

ry = O'(Wrxt + U,h;_1 + br)

— | HIDDEN UNITS
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(Cho et al. 2014; Chung et al. 2015)
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