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Neural networks as explanatory models
Prerequisites

1 They should have some desired properties w.r.t what you want
to understand;

2 They should be adequate models of the phenomenon that you
are interested in;

3 You should be able to obtain insight into how they model this
phenomenon.
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Artificial languages

Artificial languages

The compositionality of neural networks: integrating symbolism and
connectionism (Hupkes et al. 2019b)

Visualisation and ‘diagnostic classifiers’ reveal how recurrent and
recursive neural networks process hierarchical structure (Hupkes,
Veldhoen, and Zuidema 2018)

Learning compositionally through attentive guidance (Hupkes et al.
2019a)

Diagnostic classification and symbolic guidance to understand and
improve recurrent neural networks (Hupkes and Zuidema 2017)
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Natural language

Language modelling

Under the hood: using diagnostic classifiers to investigate and
improve how language models track agreement information
(Giulianelli, Harding, Mohnert, Hupkes and Zuidema, 2018)
The emergence of number and syntax units in LSTM language
models (Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and
Baroni, 2019)
Analysing neural language models: contextual decomposition reveals
default reasoning in number and gender assignment (Jumelet,
Zuidema and Hupkes, 2019)

2-layer LSTM model

Trained data: 90M
Wikipedia tokens

Captures non-trivial aspects of syntactic structure!
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The number-agreement task

Subject-verb agreement

(Linzen, Dupoux, and Goldberg 2016)
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The number-agreement task

Results

(Gulordava et al. 2018)
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The number-agreement task

Original and nonsensical sentences

(Gulordava et al. 2018)
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The number-agreement task

Original and nonsensical sentences

How do they do this?



illc.png

Diagnostic classification

Diagnostic Classification



illc.png

Diagnostic classification

Diagnostic Classification

(Hupkes, Veldhoen, and Zuidema 2018; Veldhoen, Hupkes, and
Zuidema 2016)
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Diagnostic Classification

(Hupkes, Veldhoen, and Zuidema 2018; Veldhoen, Hupkes, and
Zuidema 2016)
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Diagnostic classification

Diagnostic Classification
Sentences with correct predictions, h

(Giulianelli, Harding, Mohnert, Hupkes and Zuidema)
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Diagnostic classification

Diagnostic Classification
All sentences, h

(Giulianelli et al. 2018)
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Diagnostic classification

Diagnostic Classification
All sentences, all components

(Giulianelli et al. 2018)
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Diagnostic classification

Temporal Generalisation

(Giulianelli et al. 2018)
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Diagnostic classification

Temporal Generalisation

(Giulianelli et al. 2018)
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Diagnostic classification

Temporal generalisation matrix

(Giulianelli et al. 2018)
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Diagnostic interventions

(Giulianelli et al. 2018)
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(Giulianelli et al. 2018)
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Diagnostic Interventions

(Giulianelli et al. 2018)
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Diagnostic Interventions

Diagnostic interventions, results

* Overall differences in sentence perplexities are statistically
insignificant

(Giulianelli et al. 2018)
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Diagnostic Interventions

Conclusions

With Diagnostic Classification we can discover if, when and where
information is represented in a recurrent neural network:

Number information is stored mostly in the hidden and cell states of
the LSTM language model;

The model maintains a deep and surface representation of number;

The model is indeed distracted by the attractor, but for wrong trials,
the encoding already goes wrong before the attractor;

We can influence the behaviour of the model by inverting the
diagnostic classifiers.
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Ablation studies

Templates for number-agreement tasks

Simple
Adv
2Adv
CoAdv
NamePP
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv
2Adv
CoAdv
NamePP
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv
CoAdv
NamePP
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv the boy most probably greets the guy
CoAdv
NamePP
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv the boy most probably greets the guy
CoAdv the boy openly and deliberately greets the guy
NamePP
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv the boy most probably greets the guy
CoAdv the boy openly and deliberately greets the guy
NamePP the boy near Pat greets the guy
NounPP
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv the boy most probably greets the guy
CoAdv the boy openly and deliberately greets the guy
NamePP the boy near Pat greets the guy
NounPP the boy near the car greets the guy
NounPPAdv

(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)



illc.png

Ablation studies

Templates for number-agreement tasks

Simple the boy greets the guy
Adv the boy probably greets the guy
2Adv the boy most probably greets the guy
CoAdv the boy openly and deliberately greets the guy
NamePP the boy near Pat greets the guy
NounPP the boy near the car greets the guy
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(Lakretz, Kruszewski, Desbordes, Hupkes, Dehaene and Baroni)
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Ablation studies

Ablation Results

NA task Condition Full Model

Simple S 100
Adv S 100
2Adv S 99.9
CoAdv S 98.7
namePP SS 99.3
nounPP SS 99.2
nounPP SP 87.2
nounPPAdv SS 99.5
nounPPAdv SP 91.2
Simple P 100
Adv P 99.6
2Adv P 99.3
CoAdv P 99.3
namePP PS 68.9
nounPP PS 92.0
nounPP PP 99.0
nounPPAdv PS 99.2
nounPPAdv PP 99.8

(Lakretz et al. 2019)
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Ablation Results

NA task Condition Full Model Ablated
776 988

Simple S 100 - -
Adv S 100 - -
2Adv S 99.9 - -
CoAdv S 98.7 - 82
namePP SS 99.3 - -
nounPP SS 99.2 - -
nounPP SP 87.2 - 54.2
nounPPAdv SS 99.5 - -
nounPPAdv SP 91.2 - 54.0
Simple P 100 - -
Adv P 99.6 - -
2Adv P 99.3 - -
CoAdv P 99.3 79.2 -
namePP PS 68.9 39.9 -
nounPP PS 92.0 48.0 -
nounPP PP 99.0 78.3 -
nounPPAdv PS 99.2 63.7 -
nounPPAdv PP 99.8 - -

(Lakretz et al. 2019)
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Ablation studies

Singular unit behaviour

ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

(Lakretz et al. 2019)
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Diagnostic Classification 2

Short distance relations?

→ Diagnostic classifiers to predict number information
→ Ablation to confirm the role of short range units

The syntactic structure?

→ Diagnostic classifiers to predict syntactic depth
→ Ablation to confirm the role of the syntax units
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Ablation studies

Syntax unit 1150, cell activity



illc.png

Ablation studies

Syntax unit 1150, outgoing weights
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Ablation studies

Conclusions

Using ablation, we found that long distance number is
encoded locally, in two units;

One singular unit
One plural unit

Using diagnostic classifiers and ablation, we found that
short distance number is encoded in a distributed fashion;
Using diagnostic classification, we found a number of syntax
units, one of which highly interpretable.
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Non-linearities: tanh(10 + 20)
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Contextual Decomposition

Keep track of interactions

Linear sums: 3 * 2 + 1 * 4
Non-linearities: tanh(10 + 20)
Multiplications: 5 * 2

Which interactions?

(Murdoch, Liu, and Yu 2018)
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Generalised Contextual Decomposition

Contextual Decomposition

Keep track of interactions
Linear sums: 3 * 2 + 1 * 4
Non-linearities: tanh(10 + 20) → Shapley decompositions
Multiplications: 5 * 2

Which interactions?
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Contextual Decomposition

Keep track of interactions
Linear sums: 3 * 2 + 1 * 4
Non-linearities: tanh(10 + 20)
Multiplications: 5 * 2

Which interactions?
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Generalised Contextual Decomposition

Information flow “attention” plots

(Jumelet, Hupkes, and Zuidema 2019)
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Generalised Contextual Decomposition

Singular versus plural

NounPP – PS
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Singular versus plural

NounPP – PS NounPP – SP
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Generalised Contextual Decomposition

Pruning information

gcd
Task Condition full in

Simple S 100 73.3
Simple P 100 100

nounPP SS 99.2 93.0
nounPP SP 87.2 90.3
nounPP PS 92.0 100
nounPP PP 99.0 100
namePP SS 99.3 97.7
namePP PS 68.9 98.3

full: full model accuracy
in: information from the subject,

intercept∗: only intercept interactions
¬intercept: no intercept interactions
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Pruning information

gcd
Task Condition full in intercept∗ ¬intercept

Simple S 100 73.3 97.3 69.7
Simple P 100 100 32.7 100

nounPP SS 99.2 93.0 99.8 72.7
nounPP SP 87.2 90.3 98.8 60.5
nounPP PS 92.0 100 0.0 100
nounPP PP 99.0 100 7.0 99.8
namePP SS 99.3 97.7 99.4 76.2
namePP PS 68.9 98.3 1.3 99.9

full: full model accuracy
in: information from the subject,
intercept∗: only intercept interactions
¬intercept: no intercept interactions
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Generalised Contextual Decomposition

Conclusions

We can use contextual decomposition to track the information flow
in recurrent neural networks:

Plural verbs have a much stronger causal relationship to their plural
subject than singular verbs to their singular subject.

By considering different types of interactions, we find that to predict
singular verbs, the model relies heavily on its intercepts

GCD can also be used in other kinds of scenario’s, where behavioural
accuracy tests are not possible (anaphora resolution, negative polarity
items)!
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Discussion

What’s next?

Other linguistic questions
Negative polarity items (Jumelet and Hupkes 2018; Marvin and
Linzen 2018)
Filler-gap dependencies (Wilcox et al. 2018, 2019)
Reflexive anaphora (Futrell et al. 2019; Jumelet, Hupkes, and
Zuidema 2019; Marvin and Linzen 2018)
Garden path sentences (Futrell et al. 2019; Van Schijndel and Linzen
2018; Wilcox et al. 2019)
Syntactic priming (Prasad, Schijndel, and Linzen 2019; Van Schijndel
and Linzen 2018)
And many more. . .

Other “model” questions

The ultimate question
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Discussion

What’s next?

Other linguistic questions

Other “model” questions
Do structural biases help? (Futrell et al. 2018; Wilcox et al. 2019)
What is the impact of quantity and quality of training data
(Schijndel, Mueller, and Linzen 2019)?

The ultimate question
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Discussion

What’s next?

Other linguistic questions

Other “model” questions

The ultimate question
How does this help us to better understand human language
processing?

I’m looking forward to figuring those things out!
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Discussion

Thanks to my collaborators

Willem Zuidema

Germán Kruszewski

Mario Giulianelli

Marco Baroni

Yair Lakretz

Florian Mohnert

Jaap Jumelet

Sara Veldhoen

Jack Harding
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Discussion

Thank you

Thank you for your attention!

ILLC UvA
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https://dieuwkehupkes.nl
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Temporal Generalisation

Correct trials Wrong trials
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Generalised Contextual Decomposition
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Gated Recurrent Neural Networks

Simple Recurrent Network

ht = tanh(Wxt + Uht−1 + b)

(Elman 1990)
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Gated recurrent neural networks

ht = tanh(Wxt + Uht−1 + b)

rt = σ(Wrxt + Urht−1 + br)

r

(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

h̃t = tanh(Wxt +U(r�ht−1)+b)

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)
z
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(Cho et al. 2014; Chung et al. 2015)
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Gated recurrent neural networks

h̃t = tanh(Wxt +U(r�ht−1)+b)

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

ht = (1− zt)� ht−1 + zt � h̃t

z
h̃

r

(Cho et al. 2014; Chung et al. 2015)
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