On neural networks and compositionality

Dieuwke Hupkes

Institute for Logic, Language and Computation University of Amsterdam

October 17, 2019

Testing compositionality

Dieuwke Hupkes

Introduction Compositionality Data

Models

Results

Conclusion

Neural networks and Compositionality

- Why do I care about neural networks?
- Why do I care about compositionality?

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Neural networks and Compositionality

- Why do I care about neural networks?
- Why do I care about compositionality?
- What do these two things have to do with each other?

Testing

compositionality Dieuwke Hupkes

Introduction

 "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017) Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Model

Results

Conclusion

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Model

Results

Conclusior

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)
- "[...] neural networks are essentially very large correlation engines that hone in on any statisctical, potentially spurious pattern" (Hudson and Manning, 2018)

Testing
compositionality

Dieuwke Hupkes

Introduction Compositionality

Data

Models

Results

Conclusior

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)
- "[...] neural networks are essentially very large correlation engines that hone in on any statisctical, potentially spurious pattern" (Hudson and Manning, 2018)
- Neural networks are data-hungry because they don't develop re-usable representations (almost everyone)

Testing compositionality Dieuwke Hupkes Introduction Compositionality Data Models Results Conclusion

The rest of the team

Mathijs Mul

Verna Dankers

Elia Bruni

Testing compositionality

Dieuwke Hupkes

Introduction Compositionali Data Models Results Conclusion References

The principle of compositionality

The meaning of a complex expression is determined by the meanings of its constituents and by its structure Szabó (2000) Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

The principle of compositionality

The meaning of a complex expression is determined by the meanings of its constituents and by its structure Szabó (2000)

The meaning of a whole is a function of the meanings of the parts and of the way they are syntactically combined. Partee (1995) Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Model

Results

Conclusior

What does it mean that neural networks are not compositional?

- They find different parts than we expect
- They find different rules than we expect
- They find other aspects of the data more salient
- They cannot represent hierarchy

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

What does it mean that neural networks are not compositional?

Testing

compositionality

Dieuwke Hupkes

Compositionality

- They find different parts than we expect
- They find different rules than we expect
- They find other aspects of the data more salient

- They favour modelling exceptions over learning rules
- They are not getting the right signal from the data
- The 'test' data is distributionally too different from the training data

Our approach: "dissect" compositionality:

Does a model find the right parts and rules?

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Our approach: "dissect" compositionality:

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically

Our approach: "dissect" compositionality:

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively

Compositionality

Data

Models

Results

Conclusior

Our approach: "dissect" compositionality:

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?

Introduction

Compositionality

Data

Model

Results

Conclusior

Our approach: "dissect" compositionality:

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?
- Does a model allow substitution of synonyms?

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusior

Our approach: "dissect" compositionality:

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?
- Does a model allow substitution of synonyms?
- Does a model prefer rules or exceptions?

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusior

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

reverse A B C

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

reverse A B C \Rightarrow C B A

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

 $\begin{array}{ccc} \mbox{reverse A B C} & \Rightarrow & \mbox{C B A} \\ \mbox{copy D E} \end{array}$

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

 $\begin{array}{cccc} \mbox{reverse A B C} & \Rightarrow & \mbox{C B A} \\ \mbox{copy D E} & \Rightarrow & \mbox{D E} \end{array}$

Testing compositionality Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Data PCFG SET

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

 $\begin{array}{cccc} \mbox{reverse A B C} & \Rightarrow & \mbox{C B A} \\ \mbox{copy D E} & \Rightarrow & \mbox{D E} \\ \mbox{append C B A , D E} \end{array}$

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Data PCFG SET

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

reverse A B C	\Rightarrow	СВА	
сору D Е	\Rightarrow	DE	
append C B A , D E	\Rightarrow	CBADE	2

Data PCFG SET

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

reverse A B C \Rightarrow C B Acopy D E \Rightarrow D Eappend C B A , D E \Rightarrow C B A D E

append reverse A B C , copy D E \Rightarrow C B A D E

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

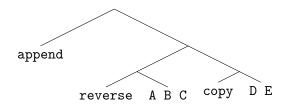
Data

Models

Results

Conclusion

append reverse A B C , copy D E $\ \Rightarrow$ C B A D E



Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

PCFG SET

Data Naturalisation

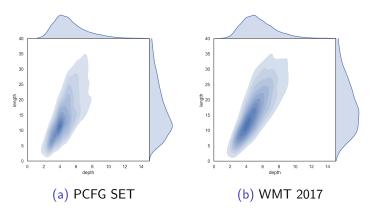


Figure: Distribution of sentence depth and length in the PCFG SET and WMT2017 data.

Testing compositionality

Dieuwke Hupkes

ntroduction

ompositionality

Data

Models

Results

Conclusion

Models

1. LSTMS2S Recurrent encoder-decoder model with attention

- 2. **ConvS2S** Convolutional encoder and decoder with multistep attention
- 3. Transformer Fully attention based model

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Results

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Model

Results

Conclusion

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	0.769 ± 0.006	0.841 ± 0.014	0.925 ± 0.007

Systematicity

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

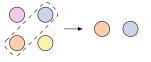
Data

Model

Results

Conclusion

References



Can models systematically recombine unseen pairs of functions?

Results Systematicity

Testing
compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	0.769 ± 0.006	0.841 ± 0.014	0.925 ± 0.007
Systematicity*	0.512 ± 0.026	0.552 ± 0.007	0.699 ± 0.009

Productivity

Can models productively combine functions to generate longer sequences?

- Newly formed sequences (generalisation)
- Combinations of known sequences (concatenation)

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Model

Results

Conclusion

Results Productivity

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

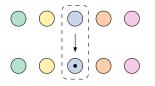
Models

Results

Conclusion

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.769} \pm \textbf{0.006}$	0.841 ± 0.014	0.925 ± 0.007
Systematicity*	0.512 ± 0.026	0.552 ± 0.007	0.699 ± 0.009
Productivity, generalisation* concatenation [†]	$\begin{array}{c} 0.293 \pm 0.010 \\ 0.196 \pm 0.006 \end{array}$	$\begin{array}{c} 0.322 \pm 0.002 \\ 0.295 \pm 0.030 \end{array}$	$\begin{array}{c} 0.561 \pm 0.015 \\ 0.539 \pm 0.012 \end{array}$

Substitutivity



Do models support substitution of synonyms?

- Equal distributions in training data
- Only in 'primitive' condition in training data

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

Results Substitutivity

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.769} \pm \textbf{0.006}$	$\textbf{0.841} \pm \textbf{0.014}$	0.925 ± 0.007
Systematicity*	0.512 ± 0.026	0.552 ± 0.007	0.699 ± 0.009
Productivity, generalisation* concatenation [†]	$\begin{array}{c} 0.293 \pm 0.010 \\ 0.196 \pm 0.006 \end{array}$	$\begin{array}{c} 0.322 \pm 0.002 \\ 0.295 \pm 0.030 \end{array}$	$\begin{array}{c} 0.561 \pm 0.015 \\ 0.539 \pm 0.012 \end{array}$
Substitutivity, eq. distributed [†] primitive [†]		$\begin{array}{c} 0.962 \pm 0.005 \\ 0.612 \pm 0.027 \end{array}$	

Substitutivity

Cosine distances

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

	LSTMS2S	ConvS2S	Transformer
Equally distributed Primitive	0.389 0.408	0.142 0.461	0.079 0.373
Other	0.960	0.862	0.772

Localism

Do models build representations incrementally?

append reverse A B C , copy D E \equiv append C B A , D E

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

Results

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

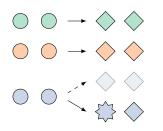
Models

Results

Conclusion

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.769} \pm \textbf{0.006}$	0.841 ± 0.014	0.925 ± 0.007
Systematicity*	0.512 ± 0.026	0.552 ± 0.007	0.699 ± 0.009
Productivity, generalisation* concatenation [†]	$\begin{array}{c} 0.293 \pm 0.010 \\ 0.196 \pm 0.006 \end{array}$	$\begin{array}{c} 0.322 \pm 0.002 \\ 0.295 \pm 0.030 \end{array}$	$\begin{array}{c} 0.561 \pm 0.015 \\ 0.539 \pm 0.012 \end{array}$
Substitutivity, equally distributed [†] primitive [†]	$\begin{array}{c} 0.763 \pm 0.010 \\ 0.606 \pm 0.038 \end{array}$	$\begin{array}{c} 0.962 \pm 0.005 \\ 0.612 \pm 0.027 \end{array}$	$\begin{array}{c} 0.984 \pm 0.003 \\ 0.877 \pm 0.043 \end{array}$
Localism [†]	0.447 ± 0.007	0.574 ± 0.044	0.561 ± 0.025

Overgeneralisation



Do models overgeneralise during training?

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

Results Overgeneralisation

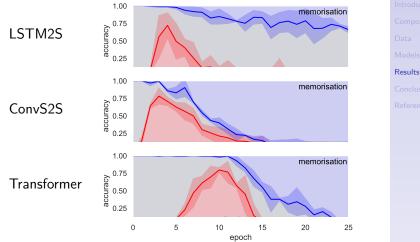
Testing compositionality

Dieuwke Hupkes

Results

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.769} \pm \textbf{0.006}$	0.841 ± 0.014	0.925 ± 0.007
Systematicity*	0.512 ± 0.026	0.552 ± 0.007	0.699 ± 0.009
Productivity, generalisation* concatenation [†]	$\begin{array}{c} 0.293 \pm 0.010 \\ 0.196 \pm 0.006 \end{array}$	$\begin{array}{c} 0.322 \pm 0.002 \\ 0.295 \pm 0.030 \end{array}$	$\begin{array}{c} 0.561 \pm 0.015 \\ 0.539 \pm 0.012 \end{array}$
Substitutivity, equally distributed † primitive †	$\begin{array}{c} 0.763 \pm 0.010 \\ 0.606 \pm 0.038 \end{array}$	$\begin{array}{c} 0.962 \pm 0.005 \\ 0.612 \pm 0.027 \end{array}$	$\begin{array}{c} 0.984 \pm 0.003 \\ 0.877 \pm 0.043 \end{array}$
Localism [†]	0.447 ± 0.007	0.574 ± 0.044	0.561 ± 0.025
Overgeneralisation*	0.727 ± 0.175	$\textbf{0.783} \pm \textbf{0.116}$	0.843 ± 0.023

Overgeneralisation



Testing compositionality

Dieuwke Hupkes

Does a model find the right parts and rules?

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically

Introduction

Compositionality

Data

Models

Results

Conclusion

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?
- Does a model allow substitution of synonyms?

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Model

Results

Conclusion

- Does a model find the right parts and rules?
- Does a model use the parts and rules it finds systematically
- Does a model use the parts and rules it finds productively
- Does a model compute *locally consistent* representations?
- Does a model allow substitution of synonyms?
- Does a model prefer rules or exceptions?

Testing compositionality

Dieuwke Hupkes

ntroduction

Compositionality

Data

Models

Results

Conclusion

The rest of the team

Mathijs Mul

Verna Dankers

Elia Bruni

Testing compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

References

- Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine reasoning. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In *Computer Vision and Pattern Recognition (CVPR)*, pages 1988–1997. IEEE, 2017.
- Brenden M. Lake and Marco Baroni. Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks. In *ICLR 2018 workshop track*, 2018.
- Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a compositional rnn in a haystack. In *ICML* workshop Architectures and Evaluation for Generality, Autonomy and Progress in AI (AEGAP), 2018.
- Barbara Partee. Lexical semantics and compositionality. *An invitation to cognitive science: Language*, 1:311–360, 1995.
- Zoltán Gendler Szabó. Compositionality as supervenience. *Linguistics and Philosophy*, 23(5):475–505, 2000.

Testing compositionality

Dieuwke Hupkes

ntroduction Compositionality Data

Models

Results

Conclusion