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Neural networks and Compositionality

I Why do I care about neural networks?
I Why do I care about compositionality?

I What do these two things have to do with each other?
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The appropriateness of neural models

I “Modern approaches [. . . ] do not explicitly formulate
and execute compositional paths” (Johnson et al., 2017)

I “Neural network models lack the abiltiy to extract
systematic rules” (Lake and Baroni, 2018)

I “They do not learn in a compositional way” (Lǐska et al.,
2018)

I “[. . . ] neural networks are essentially very large
correlation engines that hone in on any statisctical,
potentially spurious pattern” (Hudson and Manning,
2018)

I Neural networks are data-hungry because they don’t
develop re-usable representations (almost everyone)
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2018)

I “[. . . ] neural networks are essentially very large
correlation engines that hone in on any statisctical,
potentially spurious pattern” (Hudson and Manning,
2018)

I Neural networks are data-hungry because they don’t
develop re-usable representations (almost everyone)



Testing
compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

References

The rest of the team

Mathijs Mul Verna Dankers Elia Bruni



Testing
compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

References

What is compositionality

The principle of compositionality

The meaning of a complex expression is determined by the
meanings of its constituents and by its structure

Szabó (2000)
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What is compositionality

The principle of compositionality

The meaning of a complex expression is determined by the
meanings of its constituents and by its structure

Szabó (2000)

The meaning of a whole is a function of the meanings of the
parts and of the way they are syntactically combined.

Partee (1995)
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What is compositionality
What does it mean that neural networks are not compositional?

I They find different parts than we expect
I They find different rules than we expect
I They find other aspects of the data more salient
I They cannot represent hierarchy

I They favour modelling exceptions over learning rules
I They are not getting the right signal from the data
I The ‘test’ data is distributionally too different from the

training data
I . . .
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The appropriateness of neural models

Our approach: “dissect” compositionality:
I Does a model find the right parts and rules?

I Does a model use the parts and rules it finds
systematically

I Does a model use the parts and rules it finds productively
I Does a model compute locally consistent

representations?
I Does a model allow substitution of synonyms?
I Does a model prefer rules or exceptions?
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .
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Data
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Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C
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reverse A B C ⇒ C B A
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C ⇒ C B A
copy D E ⇒ D E
append C B A , D E
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PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C ⇒ C B A
copy D E ⇒ D E
append C B A , D E ⇒ C B A D E

append reverse A B C , copy D E ⇒ C B A D E
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

append reverse A B C , copy D E ⇒ C B A D E

append

reverse A B C copy D E
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PCFG SET
Data Naturalisation

(a) PCFG SET (b) WMT 2017

Figure: Distribution of sentence depth and length in the PCFG SET
and WMT2017 data.
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Models

1. LSTMS2S Recurrent encoder-decoder model with
attention

2. ConvS2S Convolutional encoder and decoder with
multistep attention

3. Transformer Fully attention based model
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Results

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007
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Systematicity

Can models systematically recombine unseen pairs of
functions?
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Results
Systematicity

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007

Systematicity∗ 0.512 ± 0.026 0.552 ± 0.007 0.699 ± 0.009
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Productivity

+

Can models productively combine functions to generate
longer sequences?
I Newly formed sequences (generalisation)
I Combinations of known sequences (concatenation)
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Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007

Systematicity∗ 0.512 ± 0.026 0.552 ± 0.007 0.699 ± 0.009

Productivity, generalisation∗ 0.293 ± 0.010 0.322 ± 0.002 0.561 ± 0.015
concatenation† 0.196 ± 0.006 0.295 ± 0.030 0.539 ± 0.012
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Substitutivity

Do models support substitution of synonyms?
I Equal distributions in training data
I Only in ‘primitive’ condition in training data
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Results
Substitutivity

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007

Systematicity∗ 0.512 ± 0.026 0.552 ± 0.007 0.699 ± 0.009

Productivity, generalisation∗ 0.293 ± 0.010 0.322 ± 0.002 0.561 ± 0.015
concatenation† 0.196 ± 0.006 0.295 ± 0.030 0.539 ± 0.012

Substitutivity, eq. distributed† 0.763 ± 0.010 0.962 ± 0.005 0.984 ± 0.003
primitive† 0.606 ± 0.038 0.612 ± 0.027 0.877 ± 0.043
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Substitutivity
Cosine distances

LSTMS2S ConvS2S Transformer

Equally distributed 0.389 0.142 0.079
Primitive 0.408 0.461 0.373
Other 0.960 0.862 0.772
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Localism

Do models build representations incrementally?

append reverse A B C , copy D E

≡ ?
append C B A , D E



Testing
compositionality

Dieuwke Hupkes

Introduction

Compositionality

Data

Models

Results

Conclusion

References

Results
Localism

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007

Systematicity∗ 0.512 ± 0.026 0.552 ± 0.007 0.699 ± 0.009

Productivity, generalisation∗ 0.293 ± 0.010 0.322 ± 0.002 0.561 ± 0.015
concatenation† 0.196 ± 0.006 0.295 ± 0.030 0.539 ± 0.012

Substitutivity, equally distributed† 0.763 ± 0.010 0.962 ± 0.005 0.984 ± 0.003
primitive† 0.606 ± 0.038 0.612 ± 0.027 0.877 ± 0.043

Localism† 0.447 ± 0.007 0.574 ± 0.044 0.561 ± 0.025
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Overgeneralisation

Do models overgeneralise during training?
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Results
Overgeneralisation

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.769 ± 0.006 0.841 ± 0.014 0.925 ± 0.007

Systematicity∗ 0.512 ± 0.026 0.552 ± 0.007 0.699 ± 0.009

Productivity, generalisation∗ 0.293 ± 0.010 0.322 ± 0.002 0.561 ± 0.015
concatenation† 0.196 ± 0.006 0.295 ± 0.030 0.539 ± 0.012

Substitutivity, equally distributed† 0.763 ± 0.010 0.962 ± 0.005 0.984 ± 0.003
primitive† 0.606 ± 0.038 0.612 ± 0.027 0.877 ± 0.043

Localism† 0.447 ± 0.007 0.574 ± 0.044 0.561 ± 0.025

Overgeneralisation∗ 0.727 ± 0.175 0.783 ± 0.116 0.843 ± 0.023
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Overgeneralisation
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Conclusion

I Does a model find the right parts and rules?

I Does a model use the parts and rules it finds
systematically

I Does a model use the parts and rules it finds productively
I Does a model compute locally consistent

representations?
I Does a model allow substitution of synonyms?
I Does a model prefer rules or exceptions?
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