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Abstract

The ability to generalise well is one of the primary desiderata of natural language processing
(NLP). Yet, how ‘good generalisation’ should be defined and how it should be evaluated is not
well understood, nor are there any common standards to evaluate generalisation. As a consequence,
newly proposed models are not usually systematically tested for their ability to generalise. In this
paper, we lay the groundwork for making generalisation-testing the new status-quo in evaluation:
we develop a taxonomy for characterising and understanding generalisation research in NLP, and
we present a comprehensive map of NLP generalisation research presented in the past 5 years. Our
taxonomy is based on an extensive literature review of generalisation research, and contains five
different (nominal) axes along which generalisation research can differ: their main motivation, the
type of generalisation they aim to solve, the type of data shift they are considering, the locus of
this shift and the source by which this data shift is obtained. We explain the axes of our taxonomy
by providing ample examples from the literature and then use it to classify N previous papers that
test generalisation. We use the results of this survey to visualise what the field of generalisation
research in NLP looks like, to more generally assess where we are when it comes to evaluating
generalisation in NLP, identify areas that are over- or underrepresented, and make recommendations
for what questions should be addressed in the future. Along with this paper, we release a webpage
where the results of our review can be dynamically viewed, and which we intend to update as new
NLP generalisation studies come out. With this work, we aim to make steps towards state-of-the-art
generalisation evaluation in NLP becoming the new standard for any new model that gets proposed.

1 Introduction

Good generalisation, roughly defined as the ability to successfully transfer representations, knowledge,
and strategies from past experience to new experiences, is one of the primary desiderata for models
of natural language processing (NLP) (Elangovan et al., 2021; Lake et al., 2017; Linzen, 2020; Plank,
2016; Schmidhuber, 1990; Wong and Wang, 2007; Yogatama et al., 2019, i.a.), as well as in the wider
field of machine learning (e.g. Kirk et al., 2021; Shen et al., 2021). There is, however, little agreement
about what kind of generalisation behaviour modern-age NLP models should exhibit, and under what
conditions they should be evaluated. Broadly speaking, generalisation is evaluated by assessing how
well a model performs on a test dataset, given the relationship of this dataset with the data the model
was trained on. For decades, it was common to put only one very simple constraint on this relationship:
that the train and test data be different. This was achieved by randomly splitting a corpus into a training
and a test partition. Generalisation was thus evaluated by training and testing models on different but
similarly sampled data – or more precisely, independent and identically distributed (i.i.d.). In the past
20 years, we have seen great strides on such random train-test splits in a range of different applications.
Since the first release of the Penn Treebank (Marcus et al., 1993), F1 scores went from values in the
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high 80’s at the end of the previous century (Collins, 1996; Magerman, 1995) and the first ten years of
the current one (e.g. Petrov and Klein, 2007; Sangati and Zuidema, 2011) to scores up to 96 in the most
recent past (Mrini et al., 2020; Yang and Deng, 2020). On the same corpus, performance for language
modelling went from perplexity scores well above 100 (Kneser and Ney, 1995; Rosenfeld, 1996) to a
score of 20.5 in 2020 (Brown et al., 2020). Progress in many areas of NLP has become even faster in
the very last years. Scores for the popular evaluation set GLUE went from values between 60 and 70
at its release (Wang et al., 2018), to scores exceeding 90 less than a year after (most famously, Devlin
et al., 2019), with performances on a wide range of tasks reaching and surpassing human level (e.g.
Devlin et al., 2019; Liu et al., 2019b; Wang et al., 2019, 2018). Yet more recently, strongly scaled-
up models (e.g. Chowdhery et al., 2022) showed astounding performances on almost all existing i.i.d.
natural language understanding benchmarks.

With this impressive progress, however, also came the realisation that for a neural network to reach
very high or human-level scores on an i.i.d. test set does not imply that the model in fact robustly gener-
alises to a wide range of different scenarios. In the recent past, we witnessed a surge of different studies
pointing out generalisation failures in neural models that have state-of-the-art scores on random train-test
splits (Blodgett et al., 2016; Khishigsuren et al., 2022; Kim and Linzen, 2020; Lake and Baroni, 2018;
McCoy et al., 2019; Plank, 2016; Razeghi et al., 2022; Sinha et al., 2021, to give just a few examples).
Some show that when models perform well on i.i.d. test splits, they might rely on simple heuristics that
do not robustly generalise in a wide range of non-i.i.d. scenarios (Gardner et al., 2020; Kaushik et al.,
2019; McCoy et al., 2019), that models over-rely on stereotypes (Parrish et al., 2022; Srivastava et al.,
2022), or bank on memorisation rather than generalisation (Razeghi et al., 2022). Others, instead, dis-
cuss cases in which performances drop when the evaluation data differs from the training data in terms
of genre, domain or topic (e.g. Malinin et al., 2021; Michel and Neubig, 2018; Plank, 2016), or when it
is produced by different subpopulations (e.g. Blodgett et al., 2016; Dixon et al., 2018). Yet others focus
on models’ inability to generalise compositionally (Dankers et al., 2022; Kim and Linzen, 2020; Lake
and Baroni, 2018; Li et al., 2021b), structurally (Sinha et al., 2021; Weber et al., 2021; Wei et al., 2021),
to longer sequences (Dubois et al., 2020; Raunak et al., 2019), or to slightly different task formulations
of the same problem (Srivastava et al., 2022).

The examples above are just a few examples in a long list of studies that aim to investigate the
generalisation abilities of NLP models, focussing in particular on models and training regimes that score
well on traditional train-test splits. Taken together, this body of work brings into question the kind of
generalisation capabilities recent breakthroughs actually reflect, and how generalisation should be tested
for – if not with i.i.d. splits. At the same time, these works differ amply in the definitions they give
of generalisation, the assumptions they make about when and how models should generalise, and the
evaluation settings they use. They encompass a wide range of generalisation-related research questions,
and they use a wide range of different methodologies and experimental setups. Such differences make it
difficult to understand how results in this area relate to each other, what types of generalisation are being
addressed and which are neglected, what types of generalisation we should prioritise in NLP, and how
we can adequately assess generalisation in the first place.

With this work, we aim to provide structure to the field of generalisation evaluation, to critically
analyse the work that has been done so far, and to set the grounds for systematic generalisation testing to
become the standard in any future modelling efforts. By carefully surveying existing work on generalisa-
tion evaluation, we identify five main axes of variation along which those studies differ. We incorporate
those five axes in a taxonomy that can be used to better understand the heterogenous landscape of gen-
eralisation testing, with as ultimate goal to help researchers better design and understand generalisation
evaluation research in the future. The different axes in our taxonomy target the following five questions:

• What is the high-level motivation for a generalisation test? (Section 2)

• What is the type of generalisation the test is addressing? (Section 3)
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Figure 1: A graphical representation of the NLP generalisation taxonomy we present in this paper. The
taxonomy conists of five different (nominal) axes, that describe the high-level motivation of the work
(§ 2); the type of generalisation the test is addressing (§ 3); what kind of data shift occurs between
training and testing (§ 4), what the source is of the data shift considered in the test (§ 5) and what the
locus of the data shift is (§ 6)

• What kind of data shift occurs between training and testing? (Section 4)

• What is the source of the data shift considered? (Section 5)

• What is the locus of the data shift in the modelling pipeline? (Section 6)

We describe the meaning of these axes and the possible (nominal) values that generalisation studies can
take on these axes, providing representative examples for each. Then, in Section 7, we use our axis-based
taxonomy to review N studies. We present the results of the survey in comprehensive figures, which we
use to describe the current landscape of generalisation testing in NLP, and to identify areas where more
work is needed. We conclude by summarising our main findings from this extensive literature review
and make concrete recommendations, outlining a vision of what generalisation testing should look like
in the future.

In summary, our contributions are the following:

i) We present an axis-based generalisation taxonomy that can be used to characterise generalisation
studies in NLP;

ii) We review N generalisation studies in NLP, along the five main axes of variation in this taxonomy;

iii) With these survey results, we discuss the status of generalisation research in NLP;

(iv) We provide suggestions to steer the field towards more sound and exhaustive generalisation tests.

Along with this paper, we also present a website www.genbench.github.io/taxonomy, where
our survey results can be visualised dynamically, and where we encourage readers to add (new) gener-
alisation studies that are not yet included.
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2 High-level motivations for evaluating generalisation

The first axis we consider in our taxonomy is the high-level motivation of a generalisation study. We
identified four closely intertwined goals of generalisation research in NLP, which we refer to as the
practical, the cognitive, the intrinsic, and the fairness motivation.1 We discuss each of them below.

Practical: in what settings can the model be used? One frequently posed motivation to study gen-
eralisation is of a highly practical nature; it concerns in what kind of scenarios a trained model can
be successfully used. Questions with a primarily practical motivation often relate to how well models
generalise to different domains or differently collected data. For instance, Michel and Neubig (2018)
consider how well machine translation models trained on canonical text can generalise to noisy data
from an internet platform; Lazaridou et al. (2021) investigate language model generalisation to different
time periods; and Talman and Chatzikyriakidis (2019) investigate how well natural language inference
(NLI) models generalise from one NLI dataset to another. Other questions that are frequently addressed
from a practical perspective concern biases in the training data, and whether models robustly generalise
to datasets that do not share these (spurious) biases (e.g. Behnke et al., 2022; Zhou et al., 2021)

Cognitive: does the model generalise like a human? A second high-level motivation that drives
generalisation research is cognitively oriented, and can be separated into two underlying categories. The
first category is related to model behaviour: human generalisation is a useful reference point for the
evaluation of model generalisation in NLP, because human generalisation is known to be particularly
powerful (e.g. Lake et al., 2017). Humans learn quickly, from fewer data than models (Linzen, 2020),
and they easily (compositionally) recombine concepts they already know to understand concepts they
have never before encountered. These feats are arguably also important for models; they therefore pro-
vide a good point of reference for generalisation testing and a compelling motivation for research toward
better generalising models.2 There is an evident overlap between cognitively-inspired and practical mo-
tivations: assuming human generalisation is strong, a model that generalises like a human should score
well also on practically motivated tests. In our axes-based taxonomy, the difference between cognitive
and practical resides mostly in the types of scenario that are considered in tests: are the scenarios artifi-
cially created to get a higher-level, isolated impression of how their behaviour compares to human-like
generalisation, or are the scenarios realistic and practically relevant?

The second, more deeply cognitively inspired category contains work that evaluates generalisation
in models to learn more about cognition and language (Baroni, 2021; Hupkes, 2020). Studies in this
category investigate whether a particular model generalises primarily in order to derive new hypotheses
about how human generalisation might work. For instance, Lakretz et al. (2021b) perform a detailed
study of how LSTM models generalise to specific kinds of nested syntactic constructions, which they
then use to inform a human experiment on the same syntactic constructions.

Intrinsic: does the model capture the task correctly? A third motivation to evaluate generalisation
in NLP models, which cuts through the two previous motivations, appertains to the question “did a model
learn the task we intended it to learn, as we intended it to learn it?". The assumption underpinning this
type of research as a whole is that if a model has truly learned the task it is trained to do, it should be able

1As we will see in what follows, it is at times difficult to tease apart the exact motivation of a generalisation study. Some
studies genuinely stem from two or more motivations, and we mark them accordingly in our survey. More often, however,
even for generalisation tests that may inform research along all four directions, it is possible to identify a main guiding motive.

2We do not always expect from a model the same type or level of generalisation a human exhibits. There are several cases in
which models already generalise better than humans – consider, for instance, calculators, which since long outperform humans
when it comes to arithmetic operations – and would be useless if they did not, as well as cases in which it is desirable for
models to generalise better, for example across languages – something humans above a certain age typically do not excel at.
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to execute this task also in settings that differ from the exact training scenarios. What changes across
studies is the set of conditions under which a model is considered to have appropriately learned a task.
For instance, researchers studying compositional generalisation (see § 3.1) assume that a correct under-
standing of language implies that the assumed compositional structure of language is captured. Under
that assumption, a model should not have trouble to generalise to new inputs that are generated using
the same compositional system. Others instead assume that true language understanding implies being
able to use language across a wide variety of tasks (see Section 3.3). Yet others argue that if a model
truly captures the relationship between two sentences in NLI tasks (e.g. Bowman et al., 2015a; Marelli
et al., 2014; Williams et al., 2018), it should be able to do so across different data sets, even if those
were sampled in a slightly different way. In studies that consider generalisation from this perspective,
generalisation failures are taken as a proof that the model – in fact – did not learn the task as we intended
it to learn it (but instead showed behaviour that made us think it did, for instance by relying on spurious
patterns or non-generalisable heuristics).

Fairness and inclusivity: does the model generalise in a fair and responsible way? A last yet very
important motivation for generalisation research is the desire to have models that are fair, responsible and
unbiased. One category of studies driven by these concepts, often ethical in nature, asks questions about
how well models generalise to diverse demographics, typically considering minority or marginalised
groups (e.g. Bender et al., 2021; Blodgett et al., 2016; Koh et al., 2021), or investigates to what ex-
tent models perpetuate (undesirable) biases learned from their training data (e.g. Dixon et al., 2018;
Hutchinson et al., 2020; Sheng et al., 2019).

Another line of research related to both fairness and inclusivity focusses on efficiency, both in terms
of the amount of data that is required for a model to converge to a solution as well as the necessary
amount of compute. In such studies, efficiency is seen as a correlate of generalisation: models that
generalise well should learn more quickly and require fewer data. The relationship of efficiency with
fairness, inclusivity and responsibility stems from the idea that models that generalise well from small
amounts of data are more inclusively applicable – for instance for low-resource languages or demo-
graphic groups for which little data is available. Furthermore, models that require less compute are
more accessible for groups with smaller computational resources, and have a lower environmental im-
pact (see, e.g. Strubell et al., 2019).

3 Types of generalisation

A second important consideration when it comes to characterising generalisation research, is what type
of generalisation a test aims to evaluate. We identify and describe five types of generalisation that are
frequently considered in the literature. Some generalisation tests are rooted in knowledge about human
generalisation, such as those that target compositional (§ 3.1) or structural generalisation (§ 3.2). Others,
instead, are motivated by more practical concerns, such as tests focussing on generalisation across tasks
(§ 3.3), languages (§ 3.4) and domains (§ 3.5), or on the sensitivity of models to the exact data they are
trained on (§ 3.6).

3.1 Compositional generalisation

The first prominent type of generalisation that can be found in the literature is compositional general-
isation, which is often argued to underpin human’s ability to quickly generalise to new data, tasks and
domains (Fodor and Pylyshyn, 1988; Lake et al., 2017; Schmidhuber, 1990). Because of this strong
connection with humans and human language, work about compositional generalisation often has a pri-
marily cognitive motivation, although practical concerns such as sample efficiency, quick adaptation and
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Figure 2: DH: Infographic that illustrates how train and test differ for different generalisation types.

good generalisation in low-resource scenarios are frequently mentioned as additional or alternative mo-
tivations to study compositional generalisation (Chaabouni et al., 2021; Linzen, 2020, to give just a few
examples). While it has a strong intuitive appeal and clear mathematical definition (Montague, 1970),
compositional generalisation is not easy to pin down empirically. Here, we follow Schmidhuber (1990)
in defining compositionality as the ability to systematically recombine previously learned elements to
map new inputs made up from these elements to their correct output. For an elaborate account of the
different arguments that come into play when defining and evaluating compositionality for a neural
network, we refer to Hupkes et al. (2020).

Compositionality involves mapping forms (e.g. phrases, sentences, larger pieces of discourse) to
their meaning. It is therefore usually evaluated in sequence-to-sequence domains such as sequence
classification (e.g. Bowman et al., 2015b; Hupkes et al., 2018; Veldhoen et al., 2016), machine translation
(e.g. Dankers et al., 2022; Liu et al., 2021; Raunak et al., 2019), semantic parsing (e.g. Finegan-Dollak
et al., 2018; Keysers et al., 2019; Kim and Linzen, 2020; Shaw et al., 2021) or other kinds of generation
tasks (e.g. Hupkes et al., 2020; Lake and Baroni, 2018). As far as we know, there have been no explicit
systematic attempts to evaluate compositionality in language models (LMs), or in an in-context learning
setup.3 If and how compositionality can be adequately evaluated in such a setup, where the domains of
form and meaning are conflated in one space, is a question that is yet to be answered.4

3.2 Structural generalisation

Another category of cognitively-inspired generalisation instead focusses on the extent to which models
can generate structurally (grammatically) correct forms, rather than on whether they can understand
them (i.e. whether they can compositionally assign a correct interpretation to inputs). Because of this,
structural generalisation is most straightforwardly evaluated in form-only models (i.e. language models).

3There are, however, several studies that focus on structural generalisation in such models. Contrary to compositional
generalisation, structural generalisation does not focus on the ability of models to correctly interpret new inputs, or assign
meanings to them, but only on whether they can generalise to their correct form. We will discuss structural generalisation in
the next subsection.

4An interesting example to consider in this context is the qualitative study conducted by Brown et al. (2020) to test if GPT-3
can use novel words correctly in a sentence; as another example, a bit further away from traditional forms of compositionality,
Talmor et al. (2020) finetune pretrained masked language models on multi-hop composition in question answering.
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Furthermore, since evaluating structural generalisation requires understanding only the input domain, it
is much more easily evaluated in completely natural setups. We will therefore focus only on work that
considers structural generalisation in models trained on natural language. Structural generalisation stud-
ies typically focus on two broad categories: syntactic generalisation, and morphological generalisation.

Syntactic generalisation One category of structural generalisation studies focusses on syntactic gen-
eralisation: they consider whether models can generalise to novel syntactic structures, or novel elements
in known syntactic structures. For instance, Jumelet et al. (2021) and Weber et al. (2021) filter out from
the training data specific licensing environments for negative polarity items, and they test whether mod-
els nevertheless learn to generalise to such environments. It is unfortunately difficult to conduct this type
of studies, which involve several different training corpora, using very large language models. On the
one hand, their high training cost makes the necessary experiments computationally extremely expen-
sive. On the other hand, generating specific test splits given knowledge of what is in the training data is
often also not possible for such models, because their training data is not in the open domain. These lim-
itations prevent researchers from controlling the relationship between the evaluation and training data,
making it hard to assess to what extent the incidental examples reported for the large language models
(most notably, in their respective release papers) are reflective of generalisation. Interesting exceptions
are a few studies that do explicitly consider shifts between training and testing in the context of syntactic
generalisation, such as those presented by Wei et al. (2021), Razeghi et al. (2022), and Elazar et al.
(2022). Wei et al. (2021), in particular, investigate how the performance of pretrained language models
in tests targeting syntactic rule learning is affected by a term’s training data frequency, by varying those
frequencies in the training corpus. Razeghi et al. (2022), instead, focus on a larger model trained on
more data, and while they do not systematically vary the training corpus, they do an elaborate analysis
of how test performance in their trained model (GPT-Z) is affected by absolute and relative frequencies
of specific terms in the model’s training data. Even more recently, Elazar et al. (2022) studies the causal
effect of simple statistics from the training data, such as co-occurrences, on models’ prediction.

Note that the vast majority of other studies focussing on the syntactic abilities of language models
(e.g. Giulianelli et al., 2018; Jumelet and Hupkes, 2018; Linzen et al., 2016; Warstadt et al., 2019, 2020)
focus on whether and how models recognise, represent, and process syntactic information, or they try
to discern the causal mechanisms by which models use such abilities (Amini et al., 2022; Elazar et al.,
2021a; Feder et al., 2021). These works do not (explicitly) consider the relationship between the data
they test on and the data that a model was trained on, and as such they do not directly study the models’
generalisation abilities across syntactic structures. We will not further discuss these studies, but in our
map of generalisation literature (Section 7), we will include a few papers in which there is an implicit
yet clear assumption that the test data substantially differs from the training data, for instance because
it includes sentences created with semantically nonsensical words (Gulordava et al., 2018), or unusually
deep levels of recursion (Lakretz et al., 2021a,b) that are not likely to naturally occur in corpora.

Morphological generalisation A second category of structural generalisation studies focusses on
morphological inflection, a popular testing ground for questions about human generalisation. Papers
focussing on morphological inflection (e.g. Corkery et al., 2019; Dankers et al., 2021; Kirov and Cot-
terell, 2018; Liu and Hulden, 2022; Malouf, 2017; McCurdy et al., 2020) are typically rooted in strong
cognitive motivations. While most of this work considers i.i.d. train-test splits, recent studies have
focussed on how morphological transducer models generalise across languages (e.g. McCarthy et al.,
2019; Pimentel et al., 2021a; Vylomova et al., 2020) as well within each language (Calderone et al.,
2021; Li and Wilson, 2021; Liu and Hulden, 2022; Pimentel et al., 2021b; Szolnok et al., 2021; Wilson
and Li, 2021), taking inspiration from wug tests which are used in psycholinguistics to probe morpho-
logical generalisation to novel words in humans (Berko, 1958; Marcus et al., 1995). In principle, such
studies could also be conducted with large language models but the lack of access to their training data
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is, again, a complication for determining whether the supposedly novel words were truly never seen by
the models.

3.3 Generalisation across tasks

A third and completely different direction of generalisation research considers the ability of a single
model to adapt to multiple NLP problems. We refer to this ability as generalisation across tasks, or
cross-task generalisation. Along with the great advancements in NLP models, in the past ten years, the
nature of cross-task generalisation tests has quite substantially changed; we discuss this evolution in the
present section.

Multitask learning Initially, cross-task generalisation was strongly connected to transfer and multi-
task learning (Collobert and Weston, 2008). In multitask learning, a model is either trained on a set of
tasks and evaluated on those same tasks, or pretrained on some tasks and then adapted to others. As
this setup favours approaches that benefit from positive transfer across tasks, it implicitly studies forms
of cross-task generalisation.5 Examples of benchmarks that were originally meant to address this kind
of cross-task transfer – although they are not used as such any longer – are multitask benchmarks such
DecaNLP (McCann et al., 2018), GLUE (Wang et al., 2018) and its successor SuperGLUE (Wang et al.,
2019). In recent times, a common approach has been to formulate all tasks as sequence-to-sequence
problems, a direction explored in the DecaNLP benchmark (McCann et al., 2018), as well as in mod-
elling, by T5 (Raffel et al., 2020), exT5 (Aribandi et al., 2022) and UnifiedSKG (Xie et al., 2022), among
others.

The pretrain-finetune paradigm In the context of multitask learning, cross-task generalisation was
deemed an extremely challenging topic. This has changed with the relatively recently introduced pretrain-
finetune paradigm, which has also shifted thoughts on how to evaluate cross-task generalisation. Rather
than evaluating how learning one task can benefit to another, this paradigm instead gives a central role
to the question of how well a model that has acquired some general knowledge about language during
pretraining can be used to generalise to different kinds of tasks in a finetuning stage – i.e. a second round
of training which involves task specific parameters (e.g. Devlin et al., 2019; Howard and Ruder, 2018;
Liu et al., 2019b; Peters et al., 2018). Interestingly, in the finetuning stage, performance on the tasks
themselves is typically evaluated with random train-test splits, and thus generalisation within individual
tasks is not necessarily considered.

Zero-shot and few-shot learning The focus of cross-task generalisation studies has more recently
shifted even further, to scenarios which consider how well pretrained language models fare in different
tasks without any additional parameters.6 In the most extreme case, this implies evaluating a language
model directly on a range of tasks without any further training. To do so, tasks are reformulated as text-
completion problems, such that language models can be prompted directly with a question representing
a specific task (zero-shot learning), potentially preceded by a few examples (few-shot learning) (Radford
et al., 2019). Datasets to do so are typically created by adapting conventional multitask datasets, where
prompting templates are (often manually) designed for each task (e.g. Mishra et al., 2022; Wang et al.,
2022; Weller et al., 2020). Unfortunately, studies that investigate the relationship between the training

5Notably, as illustrated by the work of Weber et al. (2021), the definition of task can be taken liberally in this context,
ranging from traditional notions of NLP tasks, to considering subproblems of a single classic NLP task . For instance, while
language modelling constitutes its own task, learning how to handle negative polarity items such as any or ever in a grammati-
cally correct way can be considered one subtask.

6If the pretraining corpus is seen as a large collection of different uncontrolled task, this scenario is more similar to the
original multitask learning scenario than the pretrain-finetune paradigm.
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and test data are rare, which leaves many open questions in this area. Where Brown et al. (2020) report
that data leakage from training had a small impact on their results, other recent work suggests that the
impressive capabilities of large language models on zero- or few-shot learning tasks can largely be at-
tributed to the presence of similar or identical examples in the training corpus (Han and Tsvetkov, 2022;
Razeghi et al., 2022). Moreover, models have been reported to be sensitive to exact task formulation
(Jiang et al., 2020; Schick and Schütze, 2021) and even to the order of the examples given in the few-shot
setting (Lu et al., 2022), to some extent contradicting the intuitive idea of task understanding – and thus
being considered as evidence against models’ generalisation ability.

In-context finetuning A different class of studies that considers task evaluation in the prompting setup
are those that finetune a pretrained model with prompts from one set of tasks and then evaluates them on
another set of tasks (e.g. Sanh et al., 2022; Wei et al., 2022; Zhong et al., 2021). Here, the relationship
between task performance and generalisation is clearer than in the zero- and few-shot learning setups.
While also in this case the pretraining corpus is uncontrolled, at least the relationship between the fine-
tuning training and test data can be clearly monitored, and the performances on the test data with and
without finetuning easily compared. Nevertheless, there are few studies that actually do so.

3.4 Generalisation across languages

A fourth type of generalisation, which has recently gained in popularity thanks to the strong improve-
ments in English models, is generalisation across languages, or cross-lingual generalisation. Cross-
lingual generalisation is highly relevant from a practical perspective: while the data for a selected
amount of languages (English in particular) is plentiful, for many others, resources are much more
scarce or virtually inexistent. Furthermore, strong generalisation across languages can contribute to the
democratisation and inclusiveness of NLP, by increasing the coverage over languages of the world for
which adequate models are available.

Cross-lingual finetuning There are several ways in which cross-lingual generalisation can be evalu-
ated. Most existing cross-lingual studies focus on the scenario where labelled data is available in a single
language (typically English), and the model is evaluated in multiple languages. A common approach to
address this problem is to finetune a multilingually pretrained language model on the English labelled
data, and to then transfer to the rest of the languages in a zero-shot fashion (e.g. Papadimitriou et al.,
2021; Pires et al., 2019; Wu and Dredze, 2019).7 For instance, Pires et al. (2019) show that Multilin-
gual BERT (Devlin et al., 2019) finetuned on English generalises well even to languages with different
scripts, but exhibits some systematic deficiencies that affect specific language pairs. Papadimitriou et al.
(2021), instead, investigate how grammatical features generalise across languages for the same Multi-
lingual BERT model.

Multilingual learning A second way in which cross-lingual generalisation can be evaluated, is by
considering whether models trained on multiple languages at the same time (multilingual models) per-
form better than models trained on only one language. In multitask learning, approaches that are si-
multaneously trained on multiple tasks can be seen as an implicit evaluation of generalisation across
tasks. Similarly, multilingual models trained on multiple languages can be seen as implicitly evaluating
generalisation across languages. There is a large number of papers that investigates and proposes mul-
tilingual models, mostly in the domains of language modelling and machine translation (e.g. Aharoni
et al., 2019; Al-Shedivat and Parikh, 2019; Costa-jussà et al., 2022; Fan et al., 2021; Zhang et al., 2020).

7Other approaches instead use machine translation to translate test sets into English and directly use an English model; or
to translate the training data into another language and finetune a multilingual model on the augmented data. As this setup does
not focus on generalisation per se, but rather depends on the quality of the translation model, we will not further discuss it.
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Most of these papers have as main aim to introduce improved models, and they are not motivated by
generalisation questions. Some, however, do include explicit generalisation experiments in their setup.
For instance, Zhou et al. (2018) investigate how generalisation depends on the amount of data added
for different languages; whereas Aharoni et al. (2019) investigate how zero-shot generalisation changes
depending on the amount of different languages that a model is trained on.

Multilingual benchmarks As pointed out before, while the field of multilingual modelling is vast
and associated with many interesting generalisation questions, papers in this area do not often focus
explicitly on generalisation. We would, therefore, like to end this subsection by discussing the most
important available multilingual benchmarks which can be used to evaluate cross-lingual generalisation.
Multilingual benchmarks or datasets are created in a variety of ways. Several benchmarks are created by
translating monolingual benchmarks into different languages, usually through a professional translation
service (Artetxe et al., 2020; Conneau et al., 2018; Ebrahimi et al., 2022; FitzGerald et al., 2022; Lewis
et al., 2020; Li et al., 2021a; Lin et al., 2021; Longpre et al., 2021; Mostafazadeh et al., 2016; Ponti
et al., 2020; Williams et al., 2018; Xu et al., 2020; Yang et al., 2019; Zhang et al., 2019). Other multilin-
gual benchmarks, instead, have been built by separately annotating each language via its native speakers
(e.g. Adelani et al., 2021; Asai et al., 2021; Clark et al., 2020; Muller et al., 2021). Yet another way to
construct multilingual benchmarks is to leverage existing resources that cover multiple languages. For
instance, Wikipedia has been used as a resource to derive multilingual benchmarks (Botha et al., 2020;
Liu et al., 2019a; Pan et al., 2017; Rahimi et al., 2019), and several multilingual summarisation datasets
have been created by extracting article-summary pairs from online newspapers or how-to guides (e.g.
Hasan et al., 2021; Ladhak et al., 2020; Nguyen and Daumé III, 2019; Scialom et al., 2020; Varab and
Schluter, 2021). Various linguistic resources have also been exploited: for instance, the Universal De-
pendencies treebank (Nivre et al., 2020) has been used to evaluate cross-lingual part-of-speech tagging,
and multilingual WordNet and Wiktionary have been used to build XL-WiC (Raganato et al., 2020), an
extension of WiC (Pilehvar and Camacho-Collados, 2019) which reformulates word sense disambigua-
tion in 12 languages as a binary classification task. Finally, in the same spirit of GLUE and SuperGLUE
for English, there are also several aggregated benchmarks that include selected sets of benchmarks pre-
viously proposed by others (e.g. Hu et al., 2020; Liang et al., 2020; Ruder et al., 2021; Wang et al.,
2022), which allow to evaluate cross-task and cross-language generalisation simultaneously.

3.5 Generalisation across domains

The next category considers a type of generalisation that is required in naturally occurring scenarios
(more so than the types discussed so far), and is thus very important in practice: generalisation across
different domains. As examples of the practical relevance of cross-domain generalisation, consider: a
sentiment analysis model trained to classify the sentiment of reviews for certain products which then
needs to generalise to newly commercialised products, necessarily not represented in its training data
(Ryu et al., 2018; Tan et al., 2019); a model trained on data collected from one demographic which is
then asked to generalise to the entire population (Blodgett et al., 2016); or a machine translation model
trained on canonical text and then expected to generalise to noisy data from an internet platform (Blod-
gett et al., 2017; Michel and Neubig, 2018) or to data from a different real-world domain (Malinin et al.,
2021). While there is not a precise definition of what constitutes a domain, different domains broadly
refer to collections of texts exhibiting different topical and/or stylistic properties, such as different genres
or formality levels. Again, examples help us clarify this definition. MultiNLI (Williams et al., 2018), for
instance, collects training corpora from five different genres (e.g. fiction and telephone conversations),
and includes both an in-domain evaluation set with corpora from those five genres, as well as an out-of-
domain evaluation set with corpora from five more sources (e.g. face-to-face conversations and the 9/11
public report). Blodgett et al. (2016) consider how language tools trained on data collected from white
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African-American speakers generalises to text from non-white ones. Fried et al. (2019) compare how
neural and non-neural constituency parsers generalise on out-of-domain treebanks (e.g. on a treebank of
biomedical texts), whereas Artetxe et al. (2021) compare how sparse and dense language models gen-
eralise in-domain and out-of-domain (on texts from ArXiv, Github, OpenSubtitles, among many other
sources). Kamath et al. (2020) study the problem of selective question answering under domain shift,
where the test distribution includes both in-domain and out-of-domain questions and the model must
abstain from answering when not confident. Connected to this last type of study, there is a substantial
body of work in out-of-domain detection (Hendrycks et al., 2020; Lane et al., 2007; Ryu et al., 2017,
2018; Tan et al., 2019).

Domain generalisation has often been studied in connection with domain adaptation, the problem
of adapting an existing general model to a new domain (Daumé III, 2007). This has been a very active
research area in machine translation (Axelrod et al., 2011; Bertoldi and Federico, 2009; Chu et al.,
2017; Chu and Wang, 2018; Freitag and Al-Onaizan, 2016; Hu et al., 2019; Joty et al., 2015; Koehn
and Schroeder, 2007; Luong and Manning, 2015; Wang et al., 2017a,b), with several standard datasets
(Malinin et al., 2021; Michel and Neubig, 2018) and dedicated tracks in popular shared tasks like WMT
(Bojar et al., 2019; Specia et al., 2020). In addition to machine translation, domain adaptation has also
been studied in part-of-speech tagging (Blitzer et al., 2006), sentiment analysis (Blitzer et al., 2007) and
language model pre-training (Gururangan et al., 2020), among others.

Finally, domain generalisation is closely related to temporal generalisation, where the training data
is produced in a specific time period and the model is tested on data from a different time period, either
in the future or in the past. This problem has been studied in an as yet limited range of tasks, including
language modelling (Lazaridou et al., 2021), named entity recognition in social media (Derczynski et al.,
2016; Fromreide et al., 2014; Rijhwani and Preotiuc-Pietro, 2020), named entity disambiguation (Agar-
wal et al., 2018), document classification (He et al., 2018; Huang and Paul, 2018, 2019) and sentiment
analysis (Lukes and Søgaard, 2018).

3.6 Generalistion in the context of robustness

One last category of generalisation research considers how robust models are to changes with respect to
their exact training data. Studies of this kind consider train-test shifts that stem from the data collection
process. Different from most of the previous categories discussed in Section 3, such shifts are generally
unintended and can be hard to spot. Existing research therefore focusses on characterising such scenarios
and understanding their impact. Oftentimes, studies in this category intend to show that models do not
generalise in the way we would expect them to, because the training data was in some very subtle manner
not representative of the true target distribution. This line of work is based on the idea that models should
learn task solutions that abstract away over specific, often spurious correlations that may occur in the
training data, i.e. models should learn the underlying generalising solution that humans associate with
the task (e.g. Gururangan et al., 2018; McCoy et al., 2019; Talman and Chatzikyriakidis, 2019). We refer
to tests that assess whether model performance is independent from the exact training data with the term
robustness evaluation. Robustness evaluation is very important from a practical perspective. If a model
has a strong sensitivity to spurious patterns in the training data, and is then tested on data collected
with the same bias, this can result in overestimating its performance – either generally or on specific
test cases – with potentially harmful consequences, for instance when a model does not generalise well
to particular population demographics. Below, we discuss three common scenarios associated with
robustness evaluation.

Annotation artefacts A scenario that frequently occurs in robustness studies is one where there are
annotation artefacts in the training data, which may result in overestimation of a model’s performance
on a particular task. Artefacts occur particularly frequently when datasets are collected through crowd-
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sourcing. Crowdsourced datasets often depend strongly on how exactly the annotation procedure was
set up, with subtle artefacts as a consequence. For instance, annotators may naturally tend to minimise
their cognitive effort, resorting to patterns that models learn to exploit. Popular NLI datasets like SNLI
(Bowman et al., 2015a) and MultiNLI (Williams et al., 2018) have been found to be particularly sus-
ceptible to such artefacts. For instance, Gururangan et al. (2018) and Poliak et al. (2018) showed that
a hypothesis-only baseline performs better than chance, due to its exploitation of spurious patterns in
word choice and grammatical features (e.g. negation being indicative of the contradiction class). d that
NLI models do not generalise well across different datasets. Besides NLI, other tasks like question an-
swering have also been reported to suffer from annotation artifacts (Jia and Liang, 2017; Kaushik and
Lipton, 2018), even when such artifacts were deliberately and consciously avoided during the annotation
process (Elazar et al., 2021b). Finally, Lewis et al. (2021) showed that open-domain question answering
datasets have a high-overlap between train and test instances, revealing that memorisation plays a bigger
role in these benchmarks than previously assumed.

Standardised splits Another line of work questions the way we use data splits in general, and in
particular the extent to which scores on standardised splits that stay static over time are reflective of a
model’s generalisation abilities. For instance, Gorman and Bedrick (2019) show that models perform
much worse on random train-test splits than the reported state-of-the-art performances on a standardised
split. Søgaard et al. (2021) go even further, and advocate for the use of heuristic and adversarial splits,
where a model’s capability for generalisation is challenged directly – for instance by putting all longer
sentences in the test set, or by splitting the data to maximise the difference between train and test set.

Subpopulation bias A third scenario in which robustness and performance overestimation play a role
is the case where certain demographics are under- or over-represented in the training data. As this may
result in models that generalise poorly to specific demographic groups, it is a particularly harmful case
of overestimation. For instance, Dixon et al. (2018) show that toxicity classifiers suffer from unintended
bias, caused by certain identity terms being disproportionately represented in the training data (e.g. “I am
a gay man” being assigned high toxicity scores because of “gay” being often used in toxic comments).
Similarly, Park et al. (2018) show that abusive language detection models exhibit gender bias, which
is caused by the training data being imbalanced. Blodgett et al. (2016) show that dependency parsing
and language identification tools perform poorly on text from non-white African-American speakers.
As a way to detect such imbalances and thus systematically avoid such cases of overestimation, Koh
et al. (2021) propose to evaluate models by their worst-group accuracy, rather than the average accuracy
across all demographic groups, in their CivilComments-Wilds dataset (a variant of the CivilCommons
toxicity classification dataset released by Borkan et al., 2019).

The examples above demonstrate that evaluating generalisation in the context of robustness can be
driven by several different motivations. Some studies are motivated by more practical concerns, or
conducted to gain a better perspective on intrinsic task understanding, but robustness evaluation is also
particularly important when the goal is to have fair and unbiased NLP models.

4 Shift type: what kind of shift is considered?

As we have seen in the previous section, tests to evaluate generalisation may differ in terms of their
motivation and the type of generalisation that they target. What they instead share, is that they all focus
on cases in which there is a form of shift between the data a model was (pre)trained on and the data that
was used for evaluation. In the third axis of our taxonomy, we discuss how shifts between the datasets
used in a generalisation experiment can be characterised.
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We formalise the differences between the test, training and potentially pretraining data involved in
generalisation tests as shifts between the respective data distributions:

p(xtst,ytst) test (1)

p(xtr,ytr) training / finetuning (2)

p(xptr,yptr) pretraining (3)

By expressing these data distributions as the product of the probability of the input data p(x) and the
conditional probability of the output labels given the input p(y|x) –

p(xtr,ytr) = p(xtr) p(ytr|xtr) (4)

p(xtst,ytst) = p(xtst) p(ytst|xtst) (5)

we can define four main types of relations between any two data distributions.8 One of these four types
constitutes the case in which there is no shift in data distributions – i.e. both p(xtr) = p(xtst) and
p(ytr|xtr) = p(ytst|xtst). This matches the i.i.d. evaluation setup traditionally used in machine learn-
ing. As discussed earlier, this type of evaluation, also referred to as within-distribution generalisation,
has frequently been reported not to be indicative of good performance for the more complex forms of
generalisation that we often desire from our models. We will therefore not further discuss it here, but
instead focus on the other three cases, commonly referred to as out-of-distribution (o.o.d.) evaluation.

Covariate shift The most commonly considered data distribution shift in o.o.d. generalisation research
is one where p(xtst) 6=p(xtr) and p(ytst|xtst)=p(ytr|xtr). In this scenario, often referred to as covari-
ate shift (Moreno-Torres et al., 2012; Storkey, 2009), the distribution of the input data p(x) changes but
the conditional probability of the labels given the input – which describes the task – remains the same.
Under this type of shift, one can evaluates if a model has learned the underlying task distribution while
only being exposed to p(xtr,ytr).

Most research in NLP on evaluating generalisation focuses on covariate shift. For example, chal-
lenge test sets such as HANS (McCoy et al., 2019), PAWS (Yang et al., 2019), or the COGS (Kim and
Linzen, 2020) test set contain deliberately unusual, out-of-distribution examples, selected or generated
to violate invalid heuristics in assigning labels to data samples. Less deliberate cases of covariate shift
are evaluated in out-of-domain detection or robustness evaluation studies, such as those conducted by
Ryu et al. (2018) and Tan et al. (2019) on real-world datasets. Tan et al. (2019), e.g., assume that the
process by which the sentiment of a sentence is to be computed does not to change, but the data that this
process needs to be applied to does. Of the three o.o.d. shifts we discuss in this section, covariate shift is
the shift that can be more easily solved without performing additional training or pre- or post-processing.
As we will see in the next paragraphs, a common approach to address other, more complex shifts, is to
turn them into covariate shifts.

Label shift The second type of shift corresponds to the case in which there is no difference between
the input distributions, p(xtst)=p(xtr), but instead in the conditional distributions of the labels/output:
p(ytst|xtst) 6= p(ytr|xtr). We refer to this case as label shift but it is also known as concept shift
(Moreno-Torres et al., 2012). Label shift can happen within the same task when there is a change of
domain – e.g. the phrase ‘it doesn’t run’ can lead to different sentiment labels depending on whether it
appears in a review for software or one for mascara; when there are inter-annotator disagreements; or
when there is a temporal shift in the data (see § 3.5). Another common case of label shift is a change in

8For clarity, we leave pretraining distributions aside and focus on train-test shifts, as this is the most intuitive setting.
However, the shifts described in this section can be used to describe the relation between any two data distributions involved
in a modelling pipeline.
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P (x) P (y|x)
No shift

Covariate shift
Label shift
Full shift

Table 1: Types of data distribution shifts. DH: replace with figure

task (as in § 3.3), where the meaning of the labels themselves changes as well. For example, the same
sentence may need to be binarily classified for sentiment in some cases, and for toxicity in others. In
even more extreme cases, the labels themselves might change, for example when shifting from language
modelling (where the set of labels is the language vocabulary) to POS-tagging. In NLP studies, label
shift is more often seen as an obstacle that needs to be overcome than as a setting in which models are
directly evaluated: if the same example has contradictory labels in training and test data, it is unclear
whether a correct decision at test time should be considered good generalising behaviour.

There are two main ways in which label shift is typically addressed, and framed as a simpler gen-
eralisation problem. The first is by adding an additional finetuning step (Devlin et al., 2019; Howard
and Ruder, 2018; Peters et al., 2018, i.a.), or continual learning phase (Biesialska et al., 2020; Sun et al.,
2020). In that scenario, there is a label shift between the pretraining and finetuning training data, but
not between the finetuning training and testing data. The level at which generalisation is (somewhat
implicitly) evaluated in that case, is then the pretraining level: does my pretrained model adapt well to
different conditional label distributions when further trained? The second way to address label shift is
to augment the input data with domain or task indicators (e.g. Brown et al., 2020; Raffel et al., 2020).
We saw before that the phrase ‘it doesn’t run’ can be both positive and negative, depending on what it
describes. Without further information, it is impossible for a model to infer the correct meaning. How-
ever, if we add an indicator that specifies the domain (review for mascara:..., review for
software:...), the problem is converted into a covariate shift (or potentially even no shift, if both
indicators are represented in the two distributions at hand), which then can be solved by correctly gener-
alising. Something similar happens in the in-context learning setup: by adding a prompt that describes
what needs to be done with the input, label shifts caused by a change of task are turned into shifts that
can be solved without further finetuning (see e.g. Brown et al., 2020; Schick and Schütze, 2021; Bach
et al., 2022).

Full shift The most extreme case of shift is the case in which both p(x) and p(y|x) change simultane-
ously: p(xtst) 6= p(xtr), p(ytst|xtst) 6= p(ytr|xtr). We may encounter such a situation when switching
languages in sequence-to-sequence or classification tasks (as described in § 3.4); when changing modal-
ity, as from linguistic to visual processing (Lu et al., 2021); or when switching data types completely
from language to gameplay (Ciolino et al., 2020), robotics (Jang et al., 2021), and other non-linguistic
(Papadimitriou and Jurafsky, 2020) or non-textual data (Kao and Lee, 2021). Similarly to label shift,
these full shifts are often turned into a different type of shift which can be more easily addressed without
retraining, and they are not directly used to evaluate generalisation. There also exist less extreme cases,
where both the input and the conditional label distribution vary less drastically. Consider again the ex-
ample sentence ‘it doesn’t run’, which can be both positive and negative depending on what it describes.
We have described this before as label shift, under the assumption of a stable input distribution (e.g. in
the case where training and test dataset contain reviews of all product types). However, if the training
and test dataset were domain-specific (e.g. body care vs. software), then the label shift described above
would be accompanied by covariate shift, thus becoming a case of full shift. Such cases can more easily
be used for direct generalisation evaluation.
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Figure 3: DH: Figure that illustrates different sources of splits/shifts.

4.1 On detecting shift type

We conclude this section by pointing out that while from a formal perspective the shifts that we describe
are well-defined, they may difficult to tell apart in practice, because the base distributions by which
natural languages are ‘generated’ are rarely fully known. As a consequence, it is often extremely difficult
to determine what the relationship between two different natural datasets is. While in some cases there
is nevertheless little discussion on the type of shift that occurs between two datasets, in other cases,
it might be unclear if there is an actual shift, or what its nature is. When classifying shifts in our
survey, we will focus on cases where authors (i) explicitly consider the relationship between the data
distributions they use in their experiments and (ii) the assumptions they make about this relationship
are either well-grounded in the literature (e.g. it is commonly assumed that switching between domains
constitutes a covariate shift) or actually empirically verified. Nevertheless, we identify numerous studies
that claim to be about generalisation where such considerations are absent: it is assumed that there is a
shift between train and test data, but this is not verified or grounded in previous research. Sometimes,
the assumed shift is not explicitly checked because it is considered plausible given general (linguistic)
knowledge about language. Consider, for instance, how Gulordava et al. (2018) and Lakretz et al.
(2021b), as discussed earlier in Section 3.2, regard sentences with semantically non-sensical words and
unusually deep levels of recursion as out-of-distribution with respect to the training data. Other times,
the relationship between training and test data is not investigated because the researchers do not have
access to the training data. The BigBench benchmark (Srivastava et al., 2022), for instance, contains
several tasks that might measure generalisation, but the training datasets of the models investigated are
not in the public domain. Yet in other cases, the training data is available to the authors of the paper,
but simply no extensive analysis is presented (e.g. Brown et al., 2020; Chowdhery et al., 2022). In our
survey, we also consider this entire body of work, which we mark assumed shift.

5 Data sources: how are the train and test data produced?

In the previous section, we considered what kind of shifts may occur in generalisation tests. We now
focus on a related relevant dimension, that expresses how shifts are produced or found, or, in other
words, what the source is of the differences occurring between the pretraining, training and test data
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distributions. Do shifts naturally occur between existing corpora, or are they the result of deliberate
splitting of a corpus? Is the test set generated or selected with a particular kind of shift in mind, or is all
data generated? In the fourth axis of our taxonomy, we consider how the pretraining, training and test
data distributions – and the shifts between them – are produced. We distinguish four different sources
of shifts: (i) naturally occurring shifts, shifts occurring naturally between different corpora; (ii) splits of
natural corpora, in which both the training and pretraining data are fully natural, but they are partitioned
along a specific dimension; (iii) generated shifts, where the training data is natural, but the test data is
designed with a specific distribution shift in mind; and (iv) fully generated datasets, where all data
involved is generated.

To formalise the description of these different sources of shift, we consider the unobserved base
distribution which describes all data considered in an evaluation test:

p(xbase,ybase, τ ) base (6)

The variable τ represents a data property of interest, with respect to which a specific generalisation
ability is tested. This can be an observable property of the data (e.g. the length of an input sentence),
an unobservable property (e.g. the timestamp that defines when a data point was produced), or even a
property relative to the model (architecture) under investigation (e.g. τ could represent how quickly a
data point was learned in relation to overall model convergence). The base distribution over x, y and τ
can be used to define different partition schemes, which can be adopted in generalisation experiments.
Formally, such a partitioning scheme is a rule f :T →{true, false} that discriminates data points
according to a property τ ∈T . To investigate how a partitioning scheme impacts model behaviour, the
pretraining, training and test distributions can be defined as:

p(xptr,yptr) = p(xbase,ybase |fpretrain(τ ) = true) (7)

p(xtr,ytr) = p(xbase,ybase |ftrain(τ ) = true) (8)

p(xtst,ytst) = p(xbase,ybase |ftest(τ ) = true) (9)

Using these data descriptions, we can now discuss four different sources of shifts.

Naturally occurring shifts The first option we consider is the scenario in which shifts naturally occur
between different corpora. In such cases, the variable τ refers to properties that naturally differ between
collected datasets. What characterises this type of shift source, is that both the data partitions of interest
are naturally occurring corpora, to which no systematic operations are applied: for the purposes of a
generalisation test, experimenters have no direct control over the partitioning scheme f(τ ). Examples
of naturally occurring shifts emerge from splits containing data from different annotators (Geva et al.,
2019), sources or domains (e.g. Artetxe et al., 2021; Talman and Chatzikyriakidis, 2019), data sampled
from different populations (e.g Dixon et al., 2018; Talat et al., 2018) data from different points in time
(e.g. Lazaridou et al., 2021), or separately collected corpora targeting the same task, such as MNLI
(Williams et al., 2018) and WNLI (Wang et al., 2018). In this category we also include cross-task and
cross-lingual generalisation studies in which all corpora involved are natural corpora (e.g. FitzGerald
et al., 2022; Mishra et al., 2022).

Splits of natural corpora A slightly less natural setup is the one in which a natural corpus is con-
sidered, but it is artificially split along specific dimensions. The primary difference with the previous
category is that the variable τ refers to data properties along which data would not naturally be split
– such as the length or complexity of a sample – and thus that experimenters have control over the
partitioning scheme f(τ ). Raunak et al. (2020), for instance, split naturally occurring machine transla-
tion corpora such that longer sentences occur in the test data, and Weber et al. (2021) split a language
modelling corpus such that the training data does not contain specific types of negative polarity item
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licensers. Other examples of natural data splits could be splits that maximise compound divergence to
investigate compositionality (Keysers et al., 2019).9

Generated shifts The third category on our source of shift axis concerns the case in which one data
partition (usually the training set) is a fully natural corpus, but the other partition is designed with
specific properties in mind, to address a generalisation aspect of interest. Not only do the experimenters
control the partitioning scheme, but they can also influence the underlying base distributions (Eq. 6)
by arbitrarily constructing one of the partitions. Data in the constructed partition may avoid or contain
specific (syntactic) patterns (Bhargava et al., 2021; Cui et al., 2022), violate heuristics about gender
(Dayanik and Padó, 2021; Libovický et al., 2022), or include unusually long or complex sequences
(Lakretz et al., 2021a; Raunak et al., 2019). As an example of this shift source, Dankers et al. (2022)
investigate compositionality in MT models trained on fully natural corpora by constructing test data that
addresses compositional generalisation given the specific properties of the training corpus. For NLI,
McCoy et al. (2019) design a test set that cannot be solved with models that rely on specific heuristics.
Another category of studies that fit into this type are those with adversarial test sets, generated either by
humans (Kiela et al., 2021) or automatically using a specific model (e.g. Sakaguchi et al., 2021; Zellers
et al., 2018). In the examples above, all of the constructed data occurs in the test data; note that the
opposite – where instead the training data is synthetic or generated and the test data natural – is also
possible, yet less common.

Fully generated or selected splits The last category we consider are splits that use only generated, or
even fully synthetic data. Generating data is often the most precise way of measuring specific aspects of
generalisation, as experimenters have direct control over both the base distribution and the partitioning
scheme. Sometimes the data involved is entirely synthetic (e.g. Hupkes et al., 2020; Lake and Baroni,
2018), other times it is templated natural language, or a narrow selection of an actual natural language
corpus (e.g Keysers et al., 2019; Kim and Linzen, 2020). Generated splits can vary in a number of
different dimensions. Sometimes, τ is a simple observable data property. For instance, Hupkes et al.
(2020) split their corpus based on the presence of particular function pairs P , implicitly setting τ =P ∈
x. In some cases, τ may also be defined relative to the τ of other examples, and can only be computed
globally, such as in the case of maximum compound divergence splitting (Keysers et al., 2019).

6 Locus of shift: between which data distributions does the shift occur?

In the previous sections, we discussed high-level motivations for studying generalisation in neural NLP
models, types of generalisation that have been frequently evaluated in the literature, kinds of data dis-
tribution shifts, and possible sources of data shift. These four axes demonstrate the depth and breadth
of generalisation evaluation research, and they also clearly illustrate that generalisation is evaluated in
a wide range of different experimental setups. What we have not yet explicitly discussed is between
which data distributions those shifts can occur (the locus of the shift), and how that impacts which part
of the modelling pipeline is evaluated.

Given the three data distributions that we have considered in § 4, there are four possible loci of shifts:
shifts only between the training and the test data, shifts only between the pretraining and the training
data, shifts only between the pretraining and the test data, and shifts between all data distributions. The
locus of shift determines what component of the modelling pipeline can be assessed by a generalisation
test, and thus impacts what kind of generalisation questions can be asked. For instance, a shift between
pretraining and training allows to investigate if a particular pretraining procedure is succesfull, whereas
a shift between train and test instead can be used to evaluate a model instance or training procedure. We

9Keysers et al. (2019) themselves do not apply this split to fully natural data
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Figure 4: DH: Figure that illustrates different shift loci.

describe the loci of shift as well as how they interact with the different components in the modelling
pipeline with the aid of three modelling distributions. These modelling distributions correspond to the
different stages in contemporary machine learning pipelines – testing a model, training it, and potentially
pretraining it:

p(Ytst | Xtst,θ
∗) model (10)

p(θ∗ | Xtr,Ytr,φtr, θ̂) training/finetuning (11)

p(θ̂ | Xptr,Yptr,φpr,θ0) pretraining (12)

In these equations, φ broadly denotes training and pretraining hyperparameters, θ refers to model pa-
rameters, and X ,Y indicate sets of inputs (x) and their corresponding output (y).

In short, Equation 10 defines a model instance, which specifies the probability distribution over the
target test labels Ytst, given the model’s parameters θ∗ and a set of test inputs Xtst. Equation 11, instead,
defines a training procedure, specifying a probability distribution over model parameters θ∗ ∈ Rd given
a training dataset Xtr, Ytr, a set of training hyperparameters φtr, and a (potentially pretrained) model
initialisation θ̂. Lastly, Equation 12 defines a pretraining procedure, specifying a conditional probability
over the set of parameters θ̂, given a pretraining dataset, a set of pretraining hyperparameters φpr, and
a model initialisation.10 Between which of these stages a shift occurs impacts which of these modelling
distributions can be evaluated. We discuss the different potential loci of shifts below.

The (finetune) train-test locus Probably the most commonly occuring locus of shift in generalisa-
tion experiments is the one between (finetuning) train and test data. This locus occurs in the classic
setup where a model is trained on some training data and then directly evaluated on a shifted (out-of-
distribution) test partition, or when a model is evaluated on a finetuning test set that contains a shift with
respect to the finetuning training data. Experiments of the former category are, for example, those testing
compositional (see § 3.1) and structural generalisation (§ 3.2), and frequently also domain generalisa-
tion (§ 3.5). An example of the latter category would be a test that investigates how well one pretrained
model generalises to an o.o.d. finetune train/test set (Damonte and Monti, 2021; Kavumba et al., 2022).

10Note that this formalisation generalises to the training from scratch paradigm when Xptr,Yptr = ∅, ∅, and to the in-
context-learning setup when Xtr,Ytr = ∅, ∅.
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Note that very frequently, studies evaluating o.o.d. splits during finetuning, include also a comparison
between different pretraining procedures (e.g. they investigate whether BERT or RoBERTa generalises
better to an o.o.d. finetuning test set). Such studies usually investigate a shift from the pretraining to
finetuning training data (typically a label shift), as well as a shift in the finetuning stage, and we will
mark them as having multiple loci, as further discussed in the last paragraph of this section.

Studies with the (finetune) train-test locus can assess two different parts of the modelling pipeline.
In some cases, researchers investigate the generalisation abilities of a particular model instance (i.e. a
set of parameters θ∗, as described in Equation 10). The study then focuses on the evaluation of a single
model instance – typically made available by others – without considering how exactly it was trained,
and how that impacted the model’s generalisation behaviour. For example, someone might investigate
how OPT (Zhang et al., 2022), given its training data, generalises to different test-sets, without knowing
the details about how this model was trained. Alternatively, researchers might evaluate one or more
training procedures, by considering if the training distribution results in model instances that generalise
well – for example to study whether training with different optimisers results in model instances with
different generalisation behaviour. While also this case requires evaluating model instances, the focus
of evaluation is not on one particular model instance, but rather on the procedure that generated multiple
model instances.

The pretrain-train locus A second potential locus of shift is between the pretraining and training
corpus. Experiments with this locus evaluate whether a particular pretraining procedure, as described
in Equation 12, results in models (or: parameter sets θ̂) that are useful when further trained on differ-
ent tasks or domains. For instance, Artetxe et al. (2021) consider which pretraining procedure shows
best downstream generalisation to a number of different tasks, Tian et al. (2021) investigate how well
pretrained models generalise to a newly proposed first-order-logic dataset, and Freitag and Al-Onaizan
(2016) test how well a pretrained NMT model can adapt to different domains. Crucially, we classify
studies to have a pretrain-train locus only when in their second training stage – that is necessarily re-
quired to have this locus – they use i.i.d. splits. If also the finetuning stage contains a shift, the study has
multiple loci (as described below).

The pretrain-test locus The third potential locus of shift is between pretraining and testing data. This
locus occurs when a pretrained model is not further updated but evaluated directly (Xtr,Ytr = ∅, ∅) –
as frequently happens in in-context learning setups (e.g. Lin et al., 2021; Zhang et al., 2022) – or when
a pretrained model is finetuned on examples that are i.i.d. with respect to the pretraining data and then
tested on out-of-distribution instances. The former case (θ∗ = θ̂) is similar to studies with only one
training stage in the train-test locus, but distinguishes itself by the nature of the (pre)training proce-
dure, which typically has a general purpose objective, rather than being task specific (e.g. a language
modelling objective). Furthermore, while generalisation studies with a train-test locus almost always
explicitly consider the relationship between training and testing data, this is frequently not the case with
pretrain-test studies in the in-context learning setup: often, they do not explicitly consider the relation-
ship between training and test data, but merely assume a shift occurs between those stages (e.g. Radford
et al., 2019).

Multiple loci The last option on our locus axis, which we already mentioned above, is the multiple
loci class, which we use for works that consider, in a single study, multiple shifts between different
parts of the modelling pipeline. In other words, experiments of this type present shifts both between the
pretraining and training data, as well as between the training and test data.11 Crucially, multiple-loci

11We do not distinguish cases where the test data is shifted with respect to the pretraining data from cases where it is not,
as the latter are very uncommon. It is, however, possible to set up an experiment where the pretraining and test data are drawn
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experiments evaluate all stages of the modelling pipeline at once: they consider both how generalisable
the models produced by the pretraining procedure are, as well as whether generalisation happens in the
finetuning stage itself. For instance, some studies compare how well models with different pretraining
procedures (e.g. BERT vs RoBERTa) generalise to o.o.d. splits during finetuning (e.g. Tu et al., 2020),
others how different multilingual pretraining procedures perform across-language task generalisation in
a finetuning stage (e.g. FitzGerald et al., 2022; Hu et al., 2020; Yanaka et al., 2021). Because multiple-
loci experiments necessarily also contain multiple shifts, we mark them as double shifts in the shift type
axis. The nature of these shifts may not be the same: the shift from pretraining to training may be of any
type, while the shift from training to test is often a less extreme covariate shift.

7 A review of existing generalisation research

In the previous sections, we have presented a taxonomy containing five categorical axes along which
generalisation research can been characterised, providing examples for each of the different values stud-
ies might take on those axes. Here, in this last section, we use our taxonomy to characterise a large
amount of existing generalisation research, with the aim to create a comprehensive map of existing re-
search, as well as to identify gaps. On our website12, we present several interactive plots of results, that
the reader can use to get a more in-depth view of how generalisation research in NLP is structured, to
generate different kinds of plots to support their own work, to understand how their own work fits in
with the rest of the literature or which areas might be promising to address, or to get relevant citations
for their related work section. We also provide instructions to contribute to the review, by proposing to
add new studies or studies we may have missed, or by proposing corrections to studies that might have
been misqualified on one of their axes values. In this section, instead, we present our main findings,
illustrated by several figures.

7.1 Setup

Before we arrive at our main conclusions, we first briefly describe the procedure we used for both
selection and annotation.

Paper selection For our literature review, we annotated 200 papers in total. Part of this selection was
made through a substantive literature review of the main authors, resulting in . To ensure that the selected
papers were not biased to their expertise, however, we also did a search through the acl anthology,
selecting any papers that had the word generalisation, generalise, generalization or generalize in their
title, and for from the abstract and title could be inferred that they were in fact addressing a generalisation
question. This resulted in a total of 601 papers to annotate. While the conclusions in this paper pertain
this specific selection, we intend to keep expanding the amount of papers on our website, either when
new generalisation papers come out, or when existing generalisation papers are sent to us.

Annotation setup We annotated all papers along the five axes in our taxonomy, asking for every paper
the following five questions:

• What is the main motivation for the paper to study generalisation?

• What type of generalisation does the paper consider?

• What is the locus of the shift that the study focuses on?

from the same distribution, for example to test whether a finetuning procedure results in catastrophic forgetting.
12https://genbench.github.io/survey
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motivations (1)...
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These data shifts can occur in different stages of the modelling pipeline (5)....and can be categorised into types (2).

Figure 5: A graphical representation of the NLP generalisation taxonomy we present in this paper. The
taxonomy conists of five different (nominal) axes, that describe the high-level motivation of the work
(§ 2); the type of generalisation the test is addressing (§ 3); what kind of data shift occurs between
training and testing (§ 4), what the source is of the data shift considered in the test (§ 5) and what the
locus of the data shift is (§ 6) DH: Potentially update with a flow-diagram with annotation instructions?

• What type of shift is there between the data distributions of interest?

• How was the considered shift produced?

We also annotated which task(s) the studies considered, marking papers that considered multiple
tasks at the same time multitask, or by the overarching category that the tasks belong to (e.g. NLU).
If a paper contained multiple studies, with different values (e.g. a paper considers both across-domain
and compositional generalisation), we registered those separately, resulting in a total of 694 entries.
Every entry was first annotated by a first annotator, and then double checked by a second annotator. For
convenience of the reader, we repeat the reference figure representing the axes of our taxonomy below.

7.2 Results

In this section, we report the results of our review.

7.2.1 Overall trends on different axes

First, we discuss the overall occurrences of values on all axes, without taking into account interactions
between them. We plot the (relative) occurrences of all values in Figure 6. DH: Would like to add
something on how this recently changed (potentially), with some over time plots)

Motivations As we can see in Figure 6, by far the most common motivation to test generalisation is
a practical motivation. The intrinsic en cognitive motivation follow, whereas the studies in our review
that consider generalisation from a fairness perspective make up only 8% of the total. We hypothesise
that one of the reasons that this percentage is so low stems from the fact that our keywords search in the
anthology was not optimal for detecting fairness studies, and we welcome researchers to suggest other
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Figure 6: Relative occurrences of the different values on the axes of our taxonomy.

generalisation studies with a fairness motivation for review; we will include them in a new version of
this paper.

Shift type As the motivations, also the shift types are very unevenly distributed over their potential
values: the vast majority of generalisation research considers covariate shifts. Given the fact that co-
variate shifts can occur between any two axes, and label and full shift typically only occur between
pretraining and finetuning, this is – to some extent – to be expected. More unexpected, perhaps, is the
relatively high amount of assumed shifts, that correspond with studies that claim to test generalisation,
but do not actually explicitly consider how the test data they consider relates to the training data they
have used. A more promising number, instead, is that several studies consider double shifts, implicating
that they consider generalisation in the entire modelling pipeline, rather than only in one level.

Shift locus At the locus access, we see the double shift studies appear again, with as label all: they
consider shifts in multiple levels in the modelling pipeline. On this axis, however, we also see that
there are many more studies that consider shifts only between pretrain en train, without considering if
models that generalise well from pretrain to train also generalise well in the finetuning stage. There is,
however, a relatively large number of studies that consider generalisation in the finetuning stage. The
vast majority, still, considers generalisation in models that are not pretrained: directly from train to test.
DH: Something about pretrain-test?

Shift source Almost half of the generalisation studies that we have reviewed consider naturally oc-
curring shifts: natural corpora, that are not deliberately split along a particular dimension. As we will
see later, this type of data source is most prevalent in across task and and domain generalisation studies,
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(a) Data source and generalisation
type

(b) TBD (c) TBD

for which such naturally different corpora are widely available. The next most occurring category are
generated shifts, where one of the datasets involved is generated, with a specific generalisatino property
in mind. Natural data splits – corpora split along ‘unnatural’ dimensions – and fully generated datasets
are less common, but each make up more than 10% of the total number of tests as well.

Generalisation type Lastly, in terms of generalisation type, studies are distributed relatively evenly
over different types, with the exception of across-language generalisation, which makes up a much
smaller part of the studies than the other types of generalisation. DH: Why? Is this just because we
haven’t annotated those studies yet?

7.2.2 Interactions between axes

Another interesting thing to consider are the interactions between different axes. Are there any combi-
nations of axes that occur together very often, or combinations that are instead rare? Here, we discuss
the most important trends.

What type of data is used when? DH: Include information about which types of data are used when,
and where there are potential gaps (e.g. compositional with natural data)

7.2.3 Trends across different subfields in NLP

Report overall statistics: which are the most frequent forms of generalisation research, for which tasks
is generalisation research well researched? I imagine a line/bar plot here with the numbers per axis.

7.2.4 Trends over time

7.3 Conclusion

I imagine that we might want to have a conclusion already here, but maybe it is not needed and we can
put everything together in the last section?

8 Discussion

DH: In this section we will recap and summarise our work, and also make recommendations for future
work. This will also include a description of our the website, and a commitment to add new tests that
will be sent to us.
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Figure 8: Trends across different subfields / tasks in NLP (plot will be updated)

(a) Shift locus (b) TBD (c) TBD

Figure 9: Trends over time
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